Fast Convergence to Wardrop Equilibria by Adaptive Sampling Methods

Gouleakis Themistoklis

June 2, 2011

Problem definition Wardrop's traffic model Potential function

Problem definition

The problem we are going to deal with has the following properties:

- The game is a selfish routing game divided into rounds.
- There is an infinite number of agents each responsible for an infinitesimal amount of traffic.
- In each round, each agent samples an alter- native routing path and compares the latency on this path with its current latency.
- In the next round all the agents have the opportunity to choose a different path (simultaneusly).

Introduction and Wardrop's traffic model

ploration replication policy Symmetric games Lower bounds Problem definition Wardrop's traffic model Potential function

Problem: The latency of some agent may increase!

<u>Even worse</u>: the game may get stuck in oscillations (and never reach an equilibrium).

Solution:

Let the agents sample alternative routes at random and migrate with a probability depending on the observed latency difference.

Wardrop's traffic model

- We consider a model for selfish routing where an infinite population of agents carries an infinitesimal amount of load each
- Let E denote a set of <u>resources</u> (edges).
- Continuous, non-decreasing latency functions $e: [0,1] \rightarrow R^+$.
- A set of <u>commodities</u> with flow demands or rates $r_i, i \in [k]$ such that $\sum_{i=1}^k r_i = 1$.
- For every commodity i ∈ [k] let P_i ⊆ 2^E denote a set of strategies (paths) available for commodity i.

• Let
$$P = \bigcup_{i \in [k]} P_i$$
 and let $L = max_{p \in P} |p|$.

An instance is symmetric if k = 1 and asymmetric otherwise. An instance is single-resource if for all $p \in \overline{P, |p| = 1}$.

4 B 6 4 B

Problem definition Wardrop's traffic model Potential function

Definition: Wardrop equilibrium

A feasible flow vector $(f_p)_{p \in P}$ is at a Wardrop equilibrium for the instance Γ if for every commodity $i \in [k]$ and every $p, p' \in P_i$ with $f_p > 0$ it holds that $l_p(f) \leq l_{p'}(f)$.

$\frac{\text{Potential function:}}{\Phi(f) = \sum_{e \in E} \int_0^{f_e} I(x) dx}$

- The set of allocations in equilibrium coincides with the set of allocations minimizing the potential function.
- Our goal is the design of distributed rerouting policies that approximate the Wardrop equilibrium.

Introduction and Wardrop's traffic model Symmetric games Lower bounds

Shifted potential

Potential function

- Observe, however, for certain instances of the routing game, Φ^* might be zero. In this case, we suggest to shift the potential by some positive additive term.
- So, we get an α -shifted potential.
- $\Phi^* + \alpha$ is strictly positive.
- This is equivalent to adding a virtual amount of to the latency observed on every path.

Introduction and Wardrop's traffic model

Exploration replication policy Symmetric games Lower bounds Problem definition Wardrop's traffic model Potential function

Definition: Relative slope

A differentiable latency function l has relative slope d at x if $l'(x) \leq d \cdot \frac{l(x)}{x}$. A latency function has relative slope d if it has relative slope d over the entire range [0, 1] and a class of latency functions \mathcal{L} has relative slope d if every $l \in \mathcal{L}$ has relative slope d.

Related to the derivative of xI(x). Examples: polynomials and exponentials.

Rerouting policy

- In every round, an agent is activated with constant probability $\lambda=1/32.$
- Then he performs the following two steps:
 - Sampling: With probability (1 − β) perform step 1(a) and with probability β perform step 1(b).
 (a) Proportional sampling: Sample path Q ∈ P_i with probability ^{fQ}/_{ri}.
 (b) Uniform sampling: Sample path Q ∈ P_i with probability ¹/_{|P_i|}.
 - **Order** Migration: If $l_Q < l_P$, migrate to path Q with probability $\frac{l_P l_Q}{d(l_P + \alpha)}$
- $\bullet\,$ The parameter $\beta\,$ must be chosen subject to the constraint

$$\beta \le \frac{\min_{p \in P} I_p(0) + \alpha}{L * \max_{e \in E} \max_{x \in [0,\beta]} I'_e(x)} \qquad (1)$$

Definition: Exploration - replication policy

For an instance Γ let $d \geq 1$ be an upper bound on the relative slope of the latency functions and let β be chosen as in Equation (1). For every commodity $i \in [k]$ and every path $P, Q \in \mathcal{P}_i$ with $l_Q \leq l_P$, the (α, β) -exploration-replication policy migrates a fraction of

$$\mu_{PQ} = \lambda \cdot \frac{1}{d} \left((1 - \beta) \cdot \frac{f_Q}{r_i} + \beta \cdot \frac{1}{|\mathcal{P}_i|} \right) \frac{l_P - l_Q}{l_P + \alpha}$$

with $\lambda = \frac{1}{32}$ agents from path *P* to path *Q*.

Fact

Let Γ be an instance of the congestion game and let $\Gamma^{+\alpha}$ be an instance that we obtain from Γ by inserting a new resource e_P for every $P \in \mathcal{P}$ with constant latency function $I_{e_P}(x) = \alpha$. Let Φ and $\Phi^{+\alpha}$ denote the respective potential functions.

- The (α, β)-exploration-replication policy behaves on Gamma precisely as the (0, β)-exploration-replication policy does on Γ+α.
- **2** If $\Phi^{+\alpha}(f) \leq (1+\epsilon)(\Phi^{+\alpha})$, then $\Phi(f) \leq (1+\epsilon)\Phi + \epsilon\alpha$.

Definition

For two flow vectors f and f' of consecutive rounds, the virtual potential gain is the potential gain that would occur if the latencies were fixed at the beginning of the round, i. e.

$$V(f,f') = \sum_{e \in E} l_e(f)(f'_e = f_e)$$

By our policy, this value is always negative.

Lemma

Consider an instance Γ and the (α, β) -exploration-replication policy changing the flow vector from f to f' in one step. Then we have $\Delta \Phi = \Phi(f') - \Phi(f) \geq \frac{1}{2} \sum_{P,Q \in \mathcal{P}} \mu_{PQ}(I_Q - I_P) = \frac{V(f,f')}{2}.$

Bicriteria approximation Approximation of the potential Asymmetric games

Definition: $\delta - \epsilon$ equilibrium

For a flow vector f let $\mathcal{P}^+(\delta) = \{P \in \mathcal{P} | I_P(f) \ge (1+\delta)\overline{I}(f)\}$ denote the set of δ -expensive strategies and let $\mathcal{P}(\delta) = \{P \in \mathcal{P} | I_P(f) \le (1-\delta)\overline{I}(f)\}$ denote the set of δ -cheap strategies. The population f is in a $\delta - \epsilon$ -equilibrium iff at most ϵ agents utilize δ -expensive and δ -cheap strategies. We write \mathcal{P}^+ and \mathcal{P}^- if δ is clear from the context.

12/20

Bicriteria approximation Approximation of the potential Asymmetric games

Theorem

Consider a symmetric congestion game Γ and an initial flow vector f_{init} . For the (α, β) -exploration-replication policy, the number of rounds in which the population vector is not $\delta - \epsilon$ -equilibrium w.r.t $\Gamma^{+\alpha}$ (as defined in Fact 3) is bounded from above by:

$$\mathcal{O}\left(\frac{d}{\epsilon\delta^2}\log\left(\frac{\Phi(f_{init})+\alpha}{\Phi*+\alpha}\right)\right)$$

Bicriteria approximation Approximation of the potential Asymmetric games

Lemma

Consider a symmetric routing game and a flow at $\delta - \epsilon$ -equilibrium . If the (α, β) -exploration-replication policy changes the average latency ℓ in one round by $\Delta > 10\lambda \cdot (2\epsilon + 2\delta + \beta)\overline{\ell}$, it reduces the potential Φ by at least $\Delta/(10(\delta + 1))$.

Definition (δ -Equilibrium)

A population vector f is at a δ -equilibrium if for every commodity $i \in [k]$ and for every $P \in \mathcal{P}_i$ it holds that $\ell_P(f) \ge \overline{\ell}_i - \delta \overline{\ell}$ and, in addition, if $f_P > 0$, $\ell_P(f) \le \overline{\ell}_i + \delta \overline{\ell}$.

Bicriteria approximation Approximation of the potential Asymmetric games

Single-resource

Theorem

Consider a symmetric single-resource instance Γ and an initial flow vector f_{init} . If $\beta \leq \epsilon/\delta$, the (α, β) -exploration-replication policy generates a configuration with potential $\Phi \leq (1 + \epsilon)\Phi^* + \epsilon\alpha$ in at most

$$\mathcal{O}\left(\frac{d^{12}}{\epsilon^7}\log^4\left(\frac{|E|}{\beta}\right)\log\left(\frac{\Phi(f_{\textit{init}})+\alpha}{\Phi*+\alpha}\right)\right)$$

rounds

Bicriteria approximation Approximation of the potential Asymmetric games

Single-resource

Theorem

Consider a symmetric instance Γ and an initial flow vector f_{init} . If $\beta \leq \epsilon^2/(L^3\delta^2)$ then the (α, β) -exploration-replication policy generates a configuration with potential $\Phi \leq (1 + \epsilon)\Phi^* + \epsilon\alpha$ in at most

$$\textit{poly}\left(d,\frac{1}{\epsilon},L\right)\frac{d^{12}}{\epsilon^7}\log^4\left(\frac{|\mathsf{E}|}{\beta}\right)\log\left(\frac{\Phi(f_{\textit{init}})+\alpha}{\Phi*+\alpha}\right)$$

rounds

Bicriteria approximation Approximation of the potential Asymmetric games

Definition (δ - ϵ -Equilibrium)

For a flow vector f, for every commodity $i \in [k]$, let $\mathcal{P}_i^+(\delta) = \{P \in \mathcal{P}_i \mid \ell_P(f) \geq \overline{\ell}_i(f) + \delta \overline{\ell}\}$ denote the set of δ -expensive strategies and let $\mathcal{P}_i^-(\delta) = \{P \in \mathcal{P}_i \mid \ell_P(f) \leq \overline{\ell}_i(f) - \delta \overline{\ell}\}$ denote the set of δ -cheap strategies. The population f is called an δ - ϵ -equilibrium iff at most ϵ agents utilize δ -expensive and δ -cheap strategies.

Bicriteria approximation Approximation of the potential Asymmetric games

Theorem

Consider an asymmetric congestion game Γ and an initial flow vector f_{init} . For the (α, β) -exploration-replication policy, the number of rounds in which the population vector is not at a δ - ϵ -equilibrium w.r.t $\Gamma^{+\alpha}$ (as defined in Fact 3) is bounded from above by:

$$\mathcal{O}\left(\frac{d}{\epsilon^2 \delta^2} \log\left(\frac{\Phi(f_{init}) + \alpha}{\Phi^* + \alpha}\right)\right)$$

In particular, this bound holds for $a = \beta = 0$ (and hence $\Gamma^{+\alpha} = \Gamma$).

Relative slope is necessary

Theorem

For every d, there exists a class L of latency functions with relative slope d together with an initial flow vector f , such that any Markovian rerouting policy monotone for L requires $\Omega(d/\sqrt{e})$ rounds in order to obtain a $(1 + \epsilon)$ approximation to the optimum potential.

Sampling with static probabillities is slow

Theorem

For every *m*, there exist a set of resources E with |E| = m and strategy set *P* with |P| = 2m/4 such that for every rerouting policy with static sampling probabilities for P there exist a set of latency functions $(I_e)_{e \in E}$ and an initial population such that the rerouting policy needs at least $\Omega(|P|log(1/\varepsilon))$ rounds to reach a $(1 + \varepsilon)$ -approximation of the optimal potential for the symmetric instance $\Gamma = (E, P, (I_e))$.