
NETWORK DESIGN AND THE BRAESS
PARADOX

Algorithmic Game Theory

Corelab
E.C.E - N.T.U.A.

April 14, 2011

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Outline

1 Introduction

2 Approximation Algorithms - Inapproximability results

3 Frequency of Braess’s Paradox

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 2/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Outline

1 Introduction

2 Approximation Algorithms - Inapproximability results

3 Frequency of Braess’s Paradox

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 3/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Selfish Routing

Problem: route traffic in a network of selfish non-cooperative
players.

Motivation: simple examples show that Nash equilibria can be
inefficient (Price of Anarchy).

Question: which subnetwork will exhibit the best performance
when used selfishly?

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 4/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Braess’s Paradox

s t

v

w

l(x) = 1

l(x) = xl(x) = 1

l(x) = 0

l(x) = x

r = 1

L = 1 + 0 + 1 = 2

s t

v

w

l(x) = 1

l(x) = xl(x) = 1

l(x) = x

r = 1

L = 0

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 5/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Braess’s Paradox

s t

v

w

l(x) = 1

l(x) = xl(x) = 1

l(x) = 0

l(x) = x

r = 1

1

0

L = 1 + 0 + 1 = 2

s t

v

w

l(x) = 1

l(x) = xl(x) = 1

l(x) = x

r = 1

L = 0

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 5/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Braess’s Paradox

s t

v

w

l(x) = 1

l(x) = xl(x) = 1

l(x) = 0

l(x) = x

r = 1

1

0

L = 1 + 0 + 1 = 2

s t

v

w

l(x) = 1

l(x) = xl(x) = 1

l(x) = x

r = 1

1
2

1
2

L = 1
2

+ 1 = 3
2

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 5/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The model

Directed network G = (V ,E).

Source s and destination t.

Latency function le : R≥0 → R≥0. We assume that le ’s are
continuous and non-decreasing.

Traffic r , caused by an infinite population of players, each
trying to route a negligible amount of traffic through an s − t
path.

Let P be the set of simple s − t paths. Then, a flow f is
non-negative vector indexed by P.

Feasible flow f :
∑

P∈P fP = r .

Flow on edges fe =
∑

P:e∈P fP .

Latency of a path P: lP(f) =
∑

e∈P le(fe).

Cost of feasible flow f : C (f) =
∑

P∈P lP(f)fP .

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 6/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The model

Directed network G = (V ,E).

Source s and destination t.

Latency function le : R≥0 → R≥0. We assume that le ’s are
continuous and non-decreasing.

Traffic r , caused by an infinite population of players, each
trying to route a negligible amount of traffic through an s − t
path.

Let P be the set of simple s − t paths. Then, a flow f is
non-negative vector indexed by P.

Feasible flow f :
∑

P∈P fP = r .

Flow on edges fe =
∑

P:e∈P fP .

Latency of a path P: lP(f) =
∑

e∈P le(fe).

Cost of feasible flow f : C (f) =
∑

P∈P lP(f)fP .

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 6/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The model

Directed network G = (V ,E).

Source s and destination t.

Latency function le : R≥0 → R≥0. We assume that le ’s are
continuous and non-decreasing.

Traffic r , caused by an infinite population of players, each
trying to route a negligible amount of traffic through an s − t
path.

Let P be the set of simple s − t paths. Then, a flow f is
non-negative vector indexed by P.

Feasible flow f :
∑

P∈P fP = r .

Flow on edges fe =
∑

P:e∈P fP .

Latency of a path P: lP(f) =
∑

e∈P le(fe).

Cost of feasible flow f : C (f) =
∑

P∈P lP(f)fP .

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 6/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The model

Directed network G = (V ,E).

Source s and destination t.

Latency function le : R≥0 → R≥0. We assume that le ’s are
continuous and non-decreasing.

Traffic r , caused by an infinite population of players, each
trying to route a negligible amount of traffic through an s − t
path.

Let P be the set of simple s − t paths. Then, a flow f is
non-negative vector indexed by P.

Feasible flow f :
∑

P∈P fP = r .

Flow on edges fe =
∑

P:e∈P fP .

Latency of a path P: lP(f) =
∑

e∈P le(fe).

Cost of feasible flow f : C (f) =
∑

P∈P lP(f)fP .

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 6/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The model

Directed network G = (V ,E).

Source s and destination t.

Latency function le : R≥0 → R≥0. We assume that le ’s are
continuous and non-decreasing.

Traffic r , caused by an infinite population of players, each
trying to route a negligible amount of traffic through an s − t
path.

Let P be the set of simple s − t paths. Then, a flow f is
non-negative vector indexed by P.

Feasible flow f :
∑

P∈P fP = r .

Flow on edges fe =
∑

P:e∈P fP .

Latency of a path P: lP(f) =
∑

e∈P le(fe).

Cost of feasible flow f : C (f) =
∑

P∈P lP(f)fP .

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 6/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The model

Directed network G = (V ,E).

Source s and destination t.

Latency function le : R≥0 → R≥0. We assume that le ’s are
continuous and non-decreasing.

Traffic r , caused by an infinite population of players, each
trying to route a negligible amount of traffic through an s − t
path.

Let P be the set of simple s − t paths. Then, a flow f is
non-negative vector indexed by P.

Feasible flow f :
∑

P∈P fP = r .

Flow on edges fe =
∑

P:e∈P fP .

Latency of a path P: lP(f) =
∑

e∈P le(fe).

Cost of feasible flow f : C (f) =
∑

P∈P lP(f)fP .

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 6/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The model

Directed network G = (V ,E).

Source s and destination t.

Latency function le : R≥0 → R≥0. We assume that le ’s are
continuous and non-decreasing.

Traffic r , caused by an infinite population of players, each
trying to route a negligible amount of traffic through an s − t
path.

Let P be the set of simple s − t paths. Then, a flow f is
non-negative vector indexed by P.

Feasible flow f :
∑

P∈P fP = r .

Flow on edges fe =
∑

P:e∈P fP .

Latency of a path P: lP(f) =
∑

e∈P le(fe).

Cost of feasible flow f : C (f) =
∑

P∈P lP(f)fP .

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 6/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The model

Directed network G = (V ,E).

Source s and destination t.

Latency function le : R≥0 → R≥0. We assume that le ’s are
continuous and non-decreasing.

Traffic r , caused by an infinite population of players, each
trying to route a negligible amount of traffic through an s − t
path.

Let P be the set of simple s − t paths. Then, a flow f is
non-negative vector indexed by P.

Feasible flow f :
∑

P∈P fP = r .

Flow on edges fe =
∑

P:e∈P fP .

Latency of a path P: lP(f) =
∑

e∈P le(fe).

Cost of feasible flow f : C (f) =
∑

P∈P lP(f)fP .

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 6/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The model

Directed network G = (V ,E).

Source s and destination t.

Latency function le : R≥0 → R≥0. We assume that le ’s are
continuous and non-decreasing.

Traffic r , caused by an infinite population of players, each
trying to route a negligible amount of traffic through an s − t
path.

Let P be the set of simple s − t paths. Then, a flow f is
non-negative vector indexed by P.

Feasible flow f :
∑

P∈P fP = r .

Flow on edges fe =
∑

P:e∈P fP .

Latency of a path P: lP(f) =
∑

e∈P le(fe).

Cost of feasible flow f : C (f) =
∑

P∈P lP(f)fP .

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 6/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Flows at Nash Equilibrium (1 / 2)

Intuitively, each unit of flow travels along the minimum-latency
path in a NE.

Definition

A flow f feasible for (G , r , l) is at Nash equilibrium, or is a Nash
(or Wardrop) flow, if for all P1,P2 ∈ P with fP1 > 0 and
δ ∈ (0, fP1], we have

lP1(f) ≤ lP2(f̃),

where

f̃P =

fP − δ, if P = P1

fP + δ, if P = P2

fP , otherwise

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 7/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Flows at Nash Equilibrium (1 / 2)

Intuitively, each unit of flow travels along the minimum-latency
path in a NE.

Definition

A flow f feasible for (G , r , l) is at Nash equilibrium, or is a Nash
(or Wardrop) flow, if for all P1,P2 ∈ P with fP1 > 0 and
δ ∈ (0, fP1], we have

lP1(f) ≤ lP2(f̃),

where

f̃P =

fP − δ, if P = P1

fP + δ, if P = P2

fP , otherwise

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 7/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Flows at Nash Equilibrium (2 / 2)

Theorem

A flow f feasible for (G , r , l) is at Nash equilibrium iff for every
P1,P2 ∈ P with fP1 > 0,

lP1(f) ≤ lP2(f).

Thus, all s − t paths in NE with positive flow have equal latency,
denoted by L(G , r , l).

Moreover, flows at NE always exist and are unique with respect to
L(G , r , l).

Finally, there exists a directed acyclic Nash flow.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 8/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Flows at Nash Equilibrium (2 / 2)

Theorem

A flow f feasible for (G , r , l) is at Nash equilibrium iff for every
P1,P2 ∈ P with fP1 > 0,

lP1(f) ≤ lP2(f).

Thus, all s − t paths in NE with positive flow have equal latency,
denoted by L(G , r , l).

Moreover, flows at NE always exist and are unique with respect to
L(G , r , l).

Finally, there exists a directed acyclic Nash flow.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 8/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Flows at Nash Equilibrium (2 / 2)

Theorem

A flow f feasible for (G , r , l) is at Nash equilibrium iff for every
P1,P2 ∈ P with fP1 > 0,

lP1(f) ≤ lP2(f).

Thus, all s − t paths in NE with positive flow have equal latency,
denoted by L(G , r , l).

Moreover, flows at NE always exist and are unique with respect to
L(G , r , l).

Finally, there exists a directed acyclic Nash flow.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 8/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Flows at Nash Equilibrium (2 / 2)

Theorem

A flow f feasible for (G , r , l) is at Nash equilibrium iff for every
P1,P2 ∈ P with fP1 > 0,

lP1(f) ≤ lP2(f).

Thus, all s − t paths in NE with positive flow have equal latency,
denoted by L(G , r , l).

Moreover, flows at NE always exist and are unique with respect to
L(G , r , l).

Finally, there exists a directed acyclic Nash flow.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 8/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Formalizing our Problem

Problem

Given an instance (G , r , l), find a subgraph H of G that minimizes
L(H, r , l).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 9/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Properties of Nash Flows

Lemma

For every instance (G , r , l), L(G , r , l) is a non-decreasing function
of r .

Lemma

Let f be a flow feasible for (G , r , l). For a vertex v in G , let d(v)
denote the length, with respect to edge lengths {le(fe)}e∈E of a
shortest s − v path in G . Then f is at Nash equilibrium iff

d(w)− d(v) ≤ le(fe)

for all edges e = (v ,w), with equality holding whenever fe > 0.

Lemma

If f is a flow at NE for (G , r , l), then C (f) = r · L(G , r , l).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 10/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Properties of Nash Flows

Lemma

For every instance (G , r , l), L(G , r , l) is a non-decreasing function
of r .

Lemma

Let f be a flow feasible for (G , r , l). For a vertex v in G , let d(v)
denote the length, with respect to edge lengths {le(fe)}e∈E of a
shortest s − v path in G . Then f is at Nash equilibrium iff

d(w)− d(v) ≤ le(fe)

for all edges e = (v ,w), with equality holding whenever fe > 0.

Lemma

If f is a flow at NE for (G , r , l), then C (f) = r · L(G , r , l).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 10/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Properties of Nash Flows

Lemma

For every instance (G , r , l), L(G , r , l) is a non-decreasing function
of r .

Lemma

Let f be a flow feasible for (G , r , l). For a vertex v in G , let d(v)
denote the length, with respect to edge lengths {le(fe)}e∈E of a
shortest s − v path in G . Then f is at Nash equilibrium iff

d(w)− d(v) ≤ le(fe)

for all edges e = (v ,w), with equality holding whenever fe > 0.

Lemma

If f is a flow at NE for (G , r , l), then C (f) = r · L(G , r , l).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 10/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Outline

1 Introduction

2 Approximation Algorithms - Inapproximability results

3 Frequency of Braess’s Paradox

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 11/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Linear Latency Functions

We consider latency functions of the form le(x) = aex + be ,
ae , be ≥ 0. We then call the problem the LINEAR LATENCY
NETWORK DESIGN. It is known that the price of anarchy in such
networks is at most 4

3 .

Algorithm (Trivial Algorithm)

Given an instance (G , r , l), build the whole network G .

Lemma (Roughgarden - Tardos)

Let f ∗ and f be feasible and Nash flows, respectively, for an
instance (G , r , l) with linear latency functions. Then,

C (f) ≤ 4

3
· C (f ∗).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 12/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Linear Latency Functions

We consider latency functions of the form le(x) = aex + be ,
ae , be ≥ 0. We then call the problem the LINEAR LATENCY
NETWORK DESIGN. It is known that the price of anarchy in such
networks is at most 4

3 .

Algorithm (Trivial Algorithm)

Given an instance (G , r , l), build the whole network G .

Lemma (Roughgarden - Tardos)

Let f ∗ and f be feasible and Nash flows, respectively, for an
instance (G , r , l) with linear latency functions. Then,

C (f) ≤ 4

3
· C (f ∗).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 12/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Linear Latency Functions

We consider latency functions of the form le(x) = aex + be ,
ae , be ≥ 0. We then call the problem the LINEAR LATENCY
NETWORK DESIGN. It is known that the price of anarchy in such
networks is at most 4

3 .

Algorithm (Trivial Algorithm)

Given an instance (G , r , l), build the whole network G .

Lemma (Roughgarden - Tardos)

Let f ∗ and f be feasible and Nash flows, respectively, for an
instance (G , r , l) with linear latency functions. Then,

C (f) ≤ 4

3
· C (f ∗).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 12/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The trivial algorithm performance for LINEAR LATENCY
NETWORK DESIGN

Corollary

The trivial algorithm is a 4
3 -approximation algorithm for LINEAR

LATENCY NETWORK DESIGN.

Proof.

Let H be the subgraph that minimizes L(H, r , l), and f and f ∗

be the flows at NE for (G , r , l) and (H, r , l).

C (f) = r · L(G , r , l) and C (f ∗) = r · L(H, r , l).

f ∗ feasible for (G , r , l), thus C (f) ≤ 4
3 C (f ∗).

Hence, L(G , r , l) ≤ 4
3 L(H, r , l).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 13/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The trivial algorithm performance for LINEAR LATENCY
NETWORK DESIGN

Corollary

The trivial algorithm is a 4
3 -approximation algorithm for LINEAR

LATENCY NETWORK DESIGN.

Proof.

Let H be the subgraph that minimizes L(H, r , l), and f and f ∗

be the flows at NE for (G , r , l) and (H, r , l).

C (f) = r · L(G , r , l) and C (f ∗) = r · L(H, r , l).

f ∗ feasible for (G , r , l), thus C (f) ≤ 4
3 C (f ∗).

Hence, L(G , r , l) ≤ 4
3 L(H, r , l).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 13/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The trivial algorithm performance for LINEAR LATENCY
NETWORK DESIGN

Corollary

The trivial algorithm is a 4
3 -approximation algorithm for LINEAR

LATENCY NETWORK DESIGN.

Proof.

Let H be the subgraph that minimizes L(H, r , l), and f and f ∗

be the flows at NE for (G , r , l) and (H, r , l).

C (f) = r · L(G , r , l) and C (f ∗) = r · L(H, r , l).

f ∗ feasible for (G , r , l), thus C (f) ≤ 4
3 C (f ∗).

Hence, L(G , r , l) ≤ 4
3 L(H, r , l).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 13/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The trivial algorithm performance for LINEAR LATENCY
NETWORK DESIGN

Corollary

The trivial algorithm is a 4
3 -approximation algorithm for LINEAR

LATENCY NETWORK DESIGN.

Proof.

Let H be the subgraph that minimizes L(H, r , l), and f and f ∗

be the flows at NE for (G , r , l) and (H, r , l).

C (f) = r · L(G , r , l) and C (f ∗) = r · L(H, r , l).

f ∗ feasible for (G , r , l), thus C (f) ≤ 4
3 C (f ∗).

Hence, L(G , r , l) ≤ 4
3 L(H, r , l).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 13/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The trivial algorithm performance for LINEAR LATENCY
NETWORK DESIGN

Corollary

The trivial algorithm is a 4
3 -approximation algorithm for LINEAR

LATENCY NETWORK DESIGN.

Proof.

Let H be the subgraph that minimizes L(H, r , l), and f and f ∗

be the flows at NE for (G , r , l) and (H, r , l).

C (f) = r · L(G , r , l) and C (f ∗) = r · L(H, r , l).

f ∗ feasible for (G , r , l), thus C (f) ≤ 4
3 C (f ∗).

Hence, L(G , r , l) ≤ 4
3 L(H, r , l).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 13/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Optimality of the trivial algorithm (1 / 3)

Theorem

For every ε > 0, there is no
(

4
3 − ε

)
-approximation algorithm for

LINEAR LATENCY NETWORK DESIGN, assuming P 6= NP.

We will use a reduction from the 2 DIRECTED DISJOINT PATHS
(2DDP) problem: given a directed graph G = (V ,E) and distinct
vertices s1, s2, t1, t2 ∈ V , are there si − ti paths Pi for i = 1, 2,
such that P1 and P2 are vertex-disjoint?

2DDP is NP-complete.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 14/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Optimality of the trivial algorithm (1 / 3)

Theorem

For every ε > 0, there is no
(

4
3 − ε

)
-approximation algorithm for

LINEAR LATENCY NETWORK DESIGN, assuming P 6= NP.

We will use a reduction from the 2 DIRECTED DISJOINT PATHS
(2DDP) problem: given a directed graph G = (V ,E) and distinct
vertices s1, s2, t1, t2 ∈ V , are there si − ti paths Pi for i = 1, 2,
such that P1 and P2 are vertex-disjoint?

2DDP is NP-complete.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 14/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Optimality of the trivial algorithm (2 / 3)

Proof.

t

s1

s2

t1

s

t2

G

1

1

x

x

(G ′, 1, l)

le(x) = 0

If algorithm returns a subgraph H with L(H, 1, l) < 2, then
“yes” instance of 2DDP, else “no”.

If “yes” instance, let P1 and P2 be vertext disjoint s1 − t1 and
s2 − t2 paths. Obtain H by deleting all other edges. Observe
now that L(H, 1, l) = 3

2 (1/2 routed in s1 → t1 → t and 1/2
in s2 → t2 → t). So, ALG ≤

(
4
3 − ε

)
· 3

2 < 2.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 15/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Optimality of the trivial algorithm (2 / 3)

Proof.

t

s1

s2

t1

s

t2

G

1

1

x

x

(G ′, 1, l)

le(x) = 0

If algorithm returns a subgraph H with L(H, 1, l) < 2, then
“yes” instance of 2DDP, else “no”.

If “yes” instance, let P1 and P2 be vertext disjoint s1 − t1 and
s2 − t2 paths. Obtain H by deleting all other edges. Observe
now that L(H, 1, l) = 3

2 (1/2 routed in s1 → t1 → t and 1/2
in s2 → t2 → t). So, ALG ≤

(
4
3 − ε

)
· 3

2 < 2.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 15/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Optimality of the trivial algorithm (3 / 3)

Proof (continued).

We will prove that if “no” instance, then L(H, 1, l) ≥ 2 for all
subgraphs of G ′, and so ALG ≥ 2.

Split subgraphs of G ′ in 3 groups: (i) those with an s2 − t1

path, (ii) those with an s1 − t2 path and (iii) those with an
si − ti path for exactly one i ∈ {1, 2}.
In all cases, routing flow in such a path gives NE and
L(H) = 2.

Thus, ALG ≥ OPT ≥ 2, and so we solve 2DDP.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 16/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Interpretation of results

Efficiently detecting Braess’s Paradox in networks with linear
latency functions is impossible (i.e. NP-hard). This holds even
in the most severe cases, where PoA = 4

3 .

However, by restricting our linear latency functions only to
strictly increasing ones, we can get positive results!

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 17/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Interpretation of results

Efficiently detecting Braess’s Paradox in networks with linear
latency functions is impossible (i.e. NP-hard). This holds even
in the most severe cases, where PoA = 4

3 .

However, by restricting our linear latency functions only to
strictly increasing ones, we can get positive results!

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 17/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Towards some positive results

For instances with strictly increasing linear latencies, the optimal
flow is unique and can be efficiently computed.

Definition

An instance (G , r , l) is called paradox-free if for every subgraph H
of G , L(H, r , l) ≥ L(G , r , l). An instance (G , r , l) is called
paradox-ridden if there is a subgraph H of G , such that
L(H, r , l) = L∗(G , r , l) = L(G , r , l)/PoA(G , r , l) ≤ L(G , r , l).

Note: In a paradox-free instance PoA cannot be improved by edge
removal.

Lemma

An instance (G , r , l) with G = (V ,E) is paradox-ridden iff there is
an optimal flow f ∗ that is a Nash flow on the subgraph G ∗(V ,E ∗),
where E ∗ = {e ∈ E : f ∗e > 0}.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 18/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Towards some positive results

For instances with strictly increasing linear latencies, the optimal
flow is unique and can be efficiently computed.

Definition

An instance (G , r , l) is called paradox-free if for every subgraph H
of G , L(H, r , l) ≥ L(G , r , l). An instance (G , r , l) is called
paradox-ridden if there is a subgraph H of G , such that
L(H, r , l) = L∗(G , r , l) = L(G , r , l)/PoA(G , r , l) ≤ L(G , r , l).

Note: In a paradox-free instance PoA cannot be improved by edge
removal.

Lemma

An instance (G , r , l) with G = (V ,E) is paradox-ridden iff there is
an optimal flow f ∗ that is a Nash flow on the subgraph G ∗(V ,E ∗),
where E ∗ = {e ∈ E : f ∗e > 0}.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 18/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Towards some positive results

For instances with strictly increasing linear latencies, the optimal
flow is unique and can be efficiently computed.

Definition

An instance (G , r , l) is called paradox-free if for every subgraph H
of G , L(H, r , l) ≥ L(G , r , l). An instance (G , r , l) is called
paradox-ridden if there is a subgraph H of G , such that
L(H, r , l) = L∗(G , r , l) = L(G , r , l)/PoA(G , r , l) ≤ L(G , r , l).

Note: In a paradox-free instance PoA cannot be improved by edge
removal.

Lemma

An instance (G , r , l) with G = (V ,E) is paradox-ridden iff there is
an optimal flow f ∗ that is a Nash flow on the subgraph G ∗(V ,E ∗),
where E ∗ = {e ∈ E : f ∗e > 0}.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 18/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Towards some positive results

For instances with strictly increasing linear latencies, the optimal
flow is unique and can be efficiently computed.

Definition

An instance (G , r , l) is called paradox-free if for every subgraph H
of G , L(H, r , l) ≥ L(G , r , l). An instance (G , r , l) is called
paradox-ridden if there is a subgraph H of G , such that
L(H, r , l) = L∗(G , r , l) = L(G , r , l)/PoA(G , r , l) ≤ L(G , r , l).

Note: In a paradox-free instance PoA cannot be improved by edge
removal.

Lemma

An instance (G , r , l) with G = (V ,E) is paradox-ridden iff there is
an optimal flow f ∗ that is a Nash flow on the subgraph G ∗(V ,E ∗),
where E ∗ = {e ∈ E : f ∗e > 0}.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 18/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Detecting paradox-ridden networks

Theorem (Fotakis, Kaporis, Spirakis)

Given an instance (G , r , l) with strictly increasing linear latencies,
one can decide in polynomial time whether the instance is
paradox-ridden or not.

Proof.

We can efficiently compute the unique optimal flow f ∗.

We then compute the length d(v) of a shortest s − v path
wrt edge lengths {le(f ∗e)}e∈E∗ for all v ∈ V .

f ∗ Nash flow ⇔ ∀(u, v) ∈ E ∗, d(v) = d(u) + l(u,v)(f ∗(u,v)).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 19/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Detecting paradox-ridden networks

Theorem (Fotakis, Kaporis, Spirakis)

Given an instance (G , r , l) with strictly increasing linear latencies,
one can decide in polynomial time whether the instance is
paradox-ridden or not.

Proof.

We can efficiently compute the unique optimal flow f ∗.

We then compute the length d(v) of a shortest s − v path
wrt edge lengths {le(f ∗e)}e∈E∗ for all v ∈ V .

f ∗ Nash flow ⇔ ∀(u, v) ∈ E ∗, d(v) = d(u) + l(u,v)(f ∗(u,v)).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 19/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Detecting paradox-ridden networks

Theorem (Fotakis, Kaporis, Spirakis)

Given an instance (G , r , l) with strictly increasing linear latencies,
one can decide in polynomial time whether the instance is
paradox-ridden or not.

Proof.

We can efficiently compute the unique optimal flow f ∗.

We then compute the length d(v) of a shortest s − v path
wrt edge lengths {le(f ∗e)}e∈E∗ for all v ∈ V .

f ∗ Nash flow ⇔ ∀(u, v) ∈ E ∗, d(v) = d(u) + l(u,v)(f ∗(u,v)).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 19/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Detecting paradox-ridden networks

Theorem (Fotakis, Kaporis, Spirakis)

Given an instance (G , r , l) with strictly increasing linear latencies,
one can decide in polynomial time whether the instance is
paradox-ridden or not.

Proof.

We can efficiently compute the unique optimal flow f ∗.

We then compute the length d(v) of a shortest s − v path
wrt edge lengths {le(f ∗e)}e∈E∗ for all v ∈ V .

f ∗ Nash flow ⇔ ∀(u, v) ∈ E ∗, d(v) = d(u) + l(u,v)(f ∗(u,v)).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 19/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Towards a positive result for arbitrary linear latencies

As already stated, we cannot decide whether an instance with
arbitrary linear latencies is paradox-ridden or not.

However, we can reach sufficient conditions under which we
can answer the above question.

Let (G , r , l) be an instance with le(x) = ae(x) + be and
E c = {e ∈ E : ae = 0}. Let E i = E \ E c and let O be the set
of optimal flows.

Note: All optimal flows assign the same traffic to the edges with
strictly increasing latencies, and can differ only on edges with
constant latencies.

This motivates the following LP formulation, given a fixed optimal
flow o.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 20/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Towards a positive result for arbitrary linear latencies

As already stated, we cannot decide whether an instance with
arbitrary linear latencies is paradox-ridden or not.

However, we can reach sufficient conditions under which we
can answer the above question.

Let (G , r , l) be an instance with le(x) = ae(x) + be and
E c = {e ∈ E : ae = 0}. Let E i = E \ E c and let O be the set
of optimal flows.

Note: All optimal flows assign the same traffic to the edges with
strictly increasing latencies, and can differ only on edges with
constant latencies.

This motivates the following LP formulation, given a fixed optimal
flow o.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 20/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Towards a positive result for arbitrary linear latencies

As already stated, we cannot decide whether an instance with
arbitrary linear latencies is paradox-ridden or not.

However, we can reach sufficient conditions under which we
can answer the above question.

Let (G , r , l) be an instance with le(x) = ae(x) + be and
E c = {e ∈ E : ae = 0}. Let E i = E \ E c and let O be the set
of optimal flows.

Note: All optimal flows assign the same traffic to the edges with
strictly increasing latencies, and can differ only on edges with
constant latencies.

This motivates the following LP formulation, given a fixed optimal
flow o.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 20/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Towards a positive result for arbitrary linear latencies

As already stated, we cannot decide whether an instance with
arbitrary linear latencies is paradox-ridden or not.

However, we can reach sufficient conditions under which we
can answer the above question.

Let (G , r , l) be an instance with le(x) = ae(x) + be and
E c = {e ∈ E : ae = 0}. Let E i = E \ E c and let O be the set
of optimal flows.

Note: All optimal flows assign the same traffic to the edges with
strictly increasing latencies, and can differ only on edges with
constant latencies.

This motivates the following LP formulation, given a fixed optimal
flow o.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 20/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

An LP formulation

(LP):

min
∑
e∈E c

febe , s.t. :

∑
u:(v ,u)∈E i

o(v ,u) +
∑

u:(v ,u)∈E c

f(v ,u) =
∑

u:(u,v)∈E i

o(u,v) +
∑

u:(u,v)∈E c

f(u,v)

∀v ∈ V \ {s, t},∑
u:(s,u)∈E i

o(s,u) +
∑

u:(s,u)∈E c

f(s,u) = r ,

∑
u:(u,t)∈E i

o(u,t) +
∑

u:(u,t)∈E c

f(u,t) = r ,

fe ≥ 0 ∀e ∈ E c .

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 21/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Some notes on the (LP)

An optimal solution to (LP) corresponds to a feasible flow for
(G , r , l) that agrees with o on all edges in E i and allocates
traffic to the edges in E c so that the total latency is
minimized.

Optimal solutions to (LP)
1−1←−→ Optimal flows in O.

Given an optimal flow o, the problem of checking if there is a
o ∈ O that is a Nash flow on Go reduces to the problem of
generating all optimal solutions of (LP) and checking whether
some of them can be translated into a Nash flow on the
corresponding subnetwork.

This can be performed in polynomial time if (LP)’s optimal
solution is unique.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 22/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Some notes on the (LP)

An optimal solution to (LP) corresponds to a feasible flow for
(G , r , l) that agrees with o on all edges in E i and allocates
traffic to the edges in E c so that the total latency is
minimized.

Optimal solutions to (LP)
1−1←−→ Optimal flows in O.

Given an optimal flow o, the problem of checking if there is a
o ∈ O that is a Nash flow on Go reduces to the problem of
generating all optimal solutions of (LP) and checking whether
some of them can be translated into a Nash flow on the
corresponding subnetwork.

This can be performed in polynomial time if (LP)’s optimal
solution is unique.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 22/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Some notes on the (LP)

An optimal solution to (LP) corresponds to a feasible flow for
(G , r , l) that agrees with o on all edges in E i and allocates
traffic to the edges in E c so that the total latency is
minimized.

Optimal solutions to (LP)
1−1←−→ Optimal flows in O.

Given an optimal flow o, the problem of checking if there is a
o ∈ O that is a Nash flow on Go reduces to the problem of
generating all optimal solutions of (LP) and checking whether
some of them can be translated into a Nash flow on the
corresponding subnetwork.

This can be performed in polynomial time if (LP)’s optimal
solution is unique.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 22/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Some notes on the (LP)

An optimal solution to (LP) corresponds to a feasible flow for
(G , r , l) that agrees with o on all edges in E i and allocates
traffic to the edges in E c so that the total latency is
minimized.

Optimal solutions to (LP)
1−1←−→ Optimal flows in O.

Given an optimal flow o, the problem of checking if there is a
o ∈ O that is a Nash flow on Go reduces to the problem of
generating all optimal solutions of (LP) and checking whether
some of them can be translated into a Nash flow on the
corresponding subnetwork.

This can be performed in polynomial time if (LP)’s optimal
solution is unique.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 22/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

A positive result for arbitrary linear latencies (1 / 2)

Theorem

Given an instance (G , r , l) with arbitrary linear latencies where the
corresponding (LP) has a unique optimal solution, one can decide
in polynomial time whether the instance is paradox-ridden or not.

Note: In fact, it suffices to generate all optimal basic feasible
solutions, as the (LP) allocates traffic to constant latency edges.
Observe that if a feasible flow f is a Nash flow, then any solution
f ′ with {e : f ′e > 0} ⊆ {e : fe > 0} is a Nash flow, too.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 23/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

A positive result for arbitrary linear latencies (1 / 2)

Theorem

Given an instance (G , r , l) with arbitrary linear latencies where the
corresponding (LP) has a unique optimal solution, one can decide
in polynomial time whether the instance is paradox-ridden or not.

Note: In fact, it suffices to generate all optimal basic feasible
solutions, as the (LP) allocates traffic to constant latency edges.
Observe that if a feasible flow f is a Nash flow, then any solution
f ′ with {e : f ′e > 0} ⊆ {e : fe > 0} is a Nash flow, too.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 23/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

A positive result for arbitrary linear latencies (2 / 2)

Theorem

Given an instance (G , r , l) with arbitrary linear latencies where the
corresponding (LP) has a polynomial number of basic feasible
solutions, one can decide in polynomial time whether the instance
is paradox-ridden or not.

Note: The above class includes instances with a constant number
of constant latency edges.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 24/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

A positive result for arbitrary linear latencies (2 / 2)

Theorem

Given an instance (G , r , l) with arbitrary linear latencies where the
corresponding (LP) has a polynomial number of basic feasible
solutions, one can decide in polynomial time whether the instance
is paradox-ridden or not.

Note: The above class includes instances with a constant number
of constant latency edges.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 24/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Finding near-optimal subnetworks

In general, finding optimal subnetworks in paradox-ridden
instances is NP-hard.

However, we can reach a subexponential-time approximation
scheme on networks with polynomially many paths, each of
polylogarithmic length.

For this purpose, we need to turn our attention to “sparse”
flows and ε-Nash flows.

Definition (ε-Nash flow)

For some ε > 0, a flow f is an ε-Nash flow if for every path P and
P ′ with fP > 0, lP(f) ≤ lP′(f) + ε.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 25/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Finding near-optimal subnetworks

In general, finding optimal subnetworks in paradox-ridden
instances is NP-hard.

However, we can reach a subexponential-time approximation
scheme on networks with polynomially many paths, each of
polylogarithmic length.

For this purpose, we need to turn our attention to “sparse”
flows and ε-Nash flows.

Definition (ε-Nash flow)

For some ε > 0, a flow f is an ε-Nash flow if for every path P and
P ′ with fP > 0, lP(f) ≤ lP′(f) + ε.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 25/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Finding near-optimal subnetworks

In general, finding optimal subnetworks in paradox-ridden
instances is NP-hard.

However, we can reach a subexponential-time approximation
scheme on networks with polynomially many paths, each of
polylogarithmic length.

For this purpose, we need to turn our attention to “sparse”
flows and ε-Nash flows.

Definition (ε-Nash flow)

For some ε > 0, a flow f is an ε-Nash flow if for every path P and
P ′ with fP > 0, lP(f) ≤ lP′(f) + ε.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 25/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Finding near-optimal subnetworks

In general, finding optimal subnetworks in paradox-ridden
instances is NP-hard.

However, we can reach a subexponential-time approximation
scheme on networks with polynomially many paths, each of
polylogarithmic length.

For this purpose, we need to turn our attention to “sparse”
flows and ε-Nash flows.

Definition (ε-Nash flow)

For some ε > 0, a flow f is an ε-Nash flow if for every path P and
P ′ with fP > 0, lP(f) ≤ lP′(f) + ε.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 25/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Making a flow “sparse” (1 / 3)

Lemma (Fotakis, Kaporis, Spirakis)

Let (G , 1, l) be an instance on a graph G = (V ,E), and let f be
any feasible flow. For any ε > 0, there exists a feasible flow f̃ that
assigns positive traffic to at most blog(2m)/(2ε2)c+ 1 paths, such
that |f̃e − fe | ≤ ε, ∀e ∈ E .

Proof.

Let µ = |P|, and we index the s − t paths by integers in [µ].

Flow f can be seen as a probability distribution on P.

We prove that if we select k > log(2m)/(2ε2) paths uniformly
at random with replacement according to f , and assign to
each path j a flow equal to the number of times j is selected
divided by k , we obtain a flow that is an ε-approximation to f
with positive probability. (Probabilistic Method)

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 26/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Making a flow “sparse” (1 / 3)

Lemma (Fotakis, Kaporis, Spirakis)

Let (G , 1, l) be an instance on a graph G = (V ,E), and let f be
any feasible flow. For any ε > 0, there exists a feasible flow f̃ that
assigns positive traffic to at most blog(2m)/(2ε2)c+ 1 paths, such
that |f̃e − fe | ≤ ε, ∀e ∈ E .

Proof.

Let µ = |P|, and we index the s − t paths by integers in [µ].

Flow f can be seen as a probability distribution on P.

We prove that if we select k > log(2m)/(2ε2) paths uniformly
at random with replacement according to f , and assign to
each path j a flow equal to the number of times j is selected
divided by k , we obtain a flow that is an ε-approximation to f
with positive probability. (Probabilistic Method)

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 26/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Making a flow “sparse” (2 / 3)

Proof (continued).

Fix ε and let k = blog(2m)/(2ε2)c+ 1.

Define random variables P1, ...Pk ∈ [µ], i.i.d., such that
P[Pi = j] = fj .

For each path j ∈ [µ], Fj = |{i ∈ [k] : Pi = j}| / k . Note that
E[Fj] = fj .

For each edge e and random variable Pi , define the
independent indicator variables Fe,i = 1 if e in path Pi ,
otherwise 0.

Let Fe = 1
k

∑k
i=1 Fe,i . Observe that Fe =

∑
j :e∈j Fj and

E[Fe] = fe .

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 27/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Making a flow “sparse” (2 / 3)

Proof (continued).

Fix ε and let k = blog(2m)/(2ε2)c+ 1.

Define random variables P1, ...Pk ∈ [µ], i.i.d., such that
P[Pi = j] = fj .

For each path j ∈ [µ], Fj = |{i ∈ [k] : Pi = j}| / k . Note that
E[Fj] = fj .

For each edge e and random variable Pi , define the
independent indicator variables Fe,i = 1 if e in path Pi ,
otherwise 0.

Let Fe = 1
k

∑k
i=1 Fe,i . Observe that Fe =

∑
j :e∈j Fj and

E[Fe] = fe .

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 27/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Making a flow “sparse” (2 / 3)

Proof (continued).

Fix ε and let k = blog(2m)/(2ε2)c+ 1.

Define random variables P1, ...Pk ∈ [µ], i.i.d., such that
P[Pi = j] = fj .

For each path j ∈ [µ], Fj = |{i ∈ [k] : Pi = j}| / k . Note that
E[Fj] = fj .

For each edge e and random variable Pi , define the
independent indicator variables Fe,i = 1 if e in path Pi ,
otherwise 0.

Let Fe = 1
k

∑k
i=1 Fe,i . Observe that Fe =

∑
j :e∈j Fj and

E[Fe] = fe .

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 27/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Making a flow “sparse” (2 / 3)

Proof (continued).

Fix ε and let k = blog(2m)/(2ε2)c+ 1.

Define random variables P1, ...Pk ∈ [µ], i.i.d., such that
P[Pi = j] = fj .

For each path j ∈ [µ], Fj = |{i ∈ [k] : Pi = j}| / k . Note that
E[Fj] = fj .

For each edge e and random variable Pi , define the
independent indicator variables Fe,i = 1 if e in path Pi ,
otherwise 0.

Let Fe = 1
k

∑k
i=1 Fe,i . Observe that Fe =

∑
j :e∈j Fj and

E[Fe] = fe .

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 27/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Making a flow “sparse” (2 / 3)

Proof (continued).

Fix ε and let k = blog(2m)/(2ε2)c+ 1.

Define random variables P1, ...Pk ∈ [µ], i.i.d., such that
P[Pi = j] = fj .

For each path j ∈ [µ], Fj = |{i ∈ [k] : Pi = j}| / k . Note that
E[Fj] = fj .

For each edge e and random variable Pi , define the
independent indicator variables Fe,i = 1 if e in path Pi ,
otherwise 0.

Let Fe = 1
k

∑k
i=1 Fe,i . Observe that Fe =

∑
j :e∈j Fj and

E[Fe] = fe .

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 27/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Making a flow “sparse” (3 / 3)

Proof (continued).

Note that
∑µ

j=1 Fj = 1. Thus, F1, ...,Fµ define a feasible flow
that assignes positive traffic to at most k paths and “agrees”
with f on expectation.

By the Chernoff-Hoeffding bound we get that for every edge e

P[|Fe − fe | > ε] ≤ 2e−2ε2k < 1/m

Thus, by union bound, P[∃e : |Fe − fe | > ε] < m(1/m) = 1.

So, there is positive probability that the flow (F1, ...,Fµ)
satisfies |Fe − fe | ≤ ε, ∀e ∈ E . Thus, there exists a flow f̃
with the properties of (F1, ...,Fµ).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 28/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Making a flow “sparse” (3 / 3)

Proof (continued).

Note that
∑µ

j=1 Fj = 1. Thus, F1, ...,Fµ define a feasible flow
that assignes positive traffic to at most k paths and “agrees”
with f on expectation.

By the Chernoff-Hoeffding bound we get that for every edge e

P[|Fe − fe | > ε] ≤ 2e−2ε2k < 1/m

Thus, by union bound, P[∃e : |Fe − fe | > ε] < m(1/m) = 1.

So, there is positive probability that the flow (F1, ...,Fµ)
satisfies |Fe − fe | ≤ ε, ∀e ∈ E . Thus, there exists a flow f̃
with the properties of (F1, ...,Fµ).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 28/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Making a flow “sparse” (3 / 3)

Proof (continued).

Note that
∑µ

j=1 Fj = 1. Thus, F1, ...,Fµ define a feasible flow
that assignes positive traffic to at most k paths and “agrees”
with f on expectation.

By the Chernoff-Hoeffding bound we get that for every edge e

P[|Fe − fe | > ε] ≤ 2e−2ε2k < 1/m

Thus, by union bound, P[∃e : |Fe − fe | > ε] < m(1/m) = 1.

So, there is positive probability that the flow (F1, ...,Fµ)
satisfies |Fe − fe | ≤ ε, ∀e ∈ E . Thus, there exists a flow f̃
with the properties of (F1, ...,Fµ).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 28/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Making a flow “sparse” (3 / 3)

Proof (continued).

Note that
∑µ

j=1 Fj = 1. Thus, F1, ...,Fµ define a feasible flow
that assignes positive traffic to at most k paths and “agrees”
with f on expectation.

By the Chernoff-Hoeffding bound we get that for every edge e

P[|Fe − fe | > ε] ≤ 2e−2ε2k < 1/m

Thus, by union bound, P[∃e : |Fe − fe | > ε] < m(1/m) = 1.

So, there is positive probability that the flow (F1, ...,Fµ)
satisfies |Fe − fe | ≤ ε, ∀e ∈ E . Thus, there exists a flow f̃
with the properties of (F1, ...,Fµ).

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 28/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Finding a near-optimal subnetwork

Theorem

Let (G (V ,E), 1, {aex + be}e∈E) be an instance, α = maxe∈E{ae},
and let HB be the best subnetwork of G . For some constants
d1, d2 > 0, let |P| ≤ md1 and |P| ≤ logd2 m, for all P ∈ P. Then,

for any ε > 0, we can compute in time mO(d1α
2 log2d2+1(2m)/ε2) a

flow f̃ that is an ε-Nash flow on Gf̃ and satisfies

lP(f̃) ≤ L(HB , 1, {aex + be}e∈E(HB)) + ε/2, for all paths P ∈ Gf̃ .

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 29/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Moving on to general latency functions

We will now consider general (continuous, non-decreasing)
latency functions (we call this problem the GENERAL
LATENCY NETWORK DESIGN).

We will see that the trivial algorithm is still the best thing we
can do. However, the approximation factor gets worse.

In order to prove the above, we will need new techniques, as
in networks with general latency functions, a Nash flow can be
arbitrarily more costly than other feasible flows.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 30/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

A useful tool in our approach

Definition

Let f be a Nash flow for the instance (G , r , l). Let d(v) denote
the length of a shortest s − v path with respect to the edge
lengths {le(fe)}e∈E . An ordering of the vertices of G is
f -monotone if it satisfies the following two properties:

(P1) All f -flow travels forward in the ordering.

(P2) The d-values of vertices are non-decreasing in the ordering.

Note: It can be proved that an f -monotone ordering exists relative
to a directed acyclic Nash flow.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 31/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

A useful tool in our approach

Definition

Let f be a Nash flow for the instance (G , r , l). Let d(v) denote
the length of a shortest s − v path with respect to the edge
lengths {le(fe)}e∈E . An ordering of the vertices of G is
f -monotone if it satisfies the following two properties:

(P1) All f -flow travels forward in the ordering.

(P2) The d-values of vertices are non-decreasing in the ordering.

Note: It can be proved that an f -monotone ordering exists relative
to a directed acyclic Nash flow.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 31/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The trivial algorithm performance for GENERAL
LATENCY NETWORK DESIGN

Theorem

The trivial algorithm is a bn/2c-approximation algorithm for
GENERAL LATENCY NETWORK DESIGN.

Proof.

On board

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 32/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The trivial algorithm performance for GENERAL
LATENCY NETWORK DESIGN

Theorem

The trivial algorithm is a bn/2c-approximation algorithm for
GENERAL LATENCY NETWORK DESIGN.

Proof.

On board

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 32/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Tightness of the bn/2c bound: the Bk Braess Graph

s t

v1

vk

v2

wk

w1

w2

wk ′

v3

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 33/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Tightness of the bn/2c bound: the Bk Braess Graph

s t

v1

vk

v2

wk

w1

w2

wk ′

A

A

A

A

v3

A: lke (x) = 0

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 33/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Tightness of the bn/2c bound: the Bk Braess Graph

s t

v1

vk

v2

wk

w1

w2

wk ′

A

A

A

A

B

B

B

B

v3 B

A: lke (x) = 0

B: lke (x) = 1

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 33/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Tightness of the bn/2c bound: the Bk Braess Graph

s t

v1

vk

v2

wk

w1

w2

wk ′

A

A

A

A

B

B

B

B

v3 B

C

C

C

C

C

C

C

C

A: lke (x) = 0

B: lke (x) = 1

C: l(wi ,t)∨(s,vk−i+1)(k/(k + 1)) = 0

l(wi ,t)∨(s,vk−i+1)(1) = i

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 33/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Tightness of the bn/2c bound (1 / 2)

Theorem

For every integer n ≥ 2, there is an instance (G , r , l) in which G
has n vertices and a subgraph H with

L(G , r , l) =

⌊
n

2

⌋
· L(H, r , l).

Proof.

Assume that n ≥ 4 is even (otherwise, add an isolated vertex).

So, n = 2k + 2 and we consider the instance (Bk , k , lk).

NE for (Bk , k, lk): 1 unit on each path s → vi → wi → t, and
L(Bk , k , lk) = k + 1.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 34/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Tightness of the bn/2c bound (2 / 2)

Proof (continued).

We now remove all A-type edges and obtain H.

Routing k/(k + 1) units on paths s → v1 → t, s → wk → t
and {s → vi → wi−1 → t}(i=2,...,k), we get a NE with

L(H, k , lk) = 1.

Thus, L(G)/L(H) = k + 1 = n/2.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 35/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Hardness of approximation for GENERAL LATENCY
NETWORK DESIGN

Theorem (Roughgarden)

For every ε > 0, there is no (bn/2c − ε)-approximation algorithm
for GENERAL LATENCY NETWORK DESIGN, assuming P 6= NP.

Proof is based on a reduction from the NP-complete problem
PARTITION.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 36/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Price of anarchy in networks with general latency functions

Theorem (Lin, Roughgarden, Tardos)

For every n ≥ 2 and every single-commodity instance (G , r , l) with
n vertices, PoA(G , r , l) ≤ n − 1.

Lemma

For all k ≥ 1, the only way to decrease the latency in a Nash flow
by a factor strictly larger than k is to remove at least k edges from
the network.

Theorem

The worst-case price of anarchy in multicommodity instances with
at most n vertices is 2Ω(n) as n→∞. Moreover, there are
instances in which PoA can be reduced to 1 by edge removal.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 37/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Outline

1 Introduction

2 Approximation Algorithms - Inapproximability results

3 Frequency of Braess’s Paradox

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 38/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

How often does Braess’s paradox occur?

Question: Is Braess’s paradox often in practical networks or is it
just a theoretical curiosity?

Valiant and Roughgarden answer that it occurs in many networks
by utilizing random graph models.

Definition (Braess ratio)

The Braess ratio of a network is the largest factor by which the
removal of one or more edges can improve the latency of traffic in
an equilibrium flow.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 39/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

How often does Braess’s paradox occur?

Question: Is Braess’s paradox often in practical networks or is it
just a theoretical curiosity?

Valiant and Roughgarden answer that it occurs in many networks
by utilizing random graph models.

Definition (Braess ratio)

The Braess ratio of a network is the largest factor by which the
removal of one or more edges can improve the latency of traffic in
an equilibrium flow.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 39/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

How often does Braess’s paradox occur?

Question: Is Braess’s paradox often in practical networks or is it
just a theoretical curiosity?

Valiant and Roughgarden answer that it occurs in many networks
by utilizing random graph models.

Definition (Braess ratio)

The Braess ratio of a network is the largest factor by which the
removal of one or more edges can improve the latency of traffic in
an equilibrium flow.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 39/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The model

Probability distribution oven graphs and edge latency
functions.
Graph G distributed according to the standard Erdös-Renyi
G(n, p) model. For a fixed n ≥ 2, each edge is present
independently with probability p. We assume that
p = Ω(n−1/2+ε) for some ε > 0.
Source s and destination t are chosen randomly or arbitrarily.
(we assume that there is no edge (s, t)).
Linear latency functions l(x) = ax + b, a, b ≥ 0:

1 Independent coefficients model: two fixed distributions A and
B, and each edge is independently given a latency function
l(x) = ax + b, where a and b are drawn independently from A
and B, respectively.

2 1/x model: each edge present in the graph (independently) has
the latency function l(x) = x with probability q and l(x) = 1
with probability 1− q.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 40/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The model

Probability distribution oven graphs and edge latency
functions.
Graph G distributed according to the standard Erdös-Renyi
G(n, p) model. For a fixed n ≥ 2, each edge is present
independently with probability p. We assume that
p = Ω(n−1/2+ε) for some ε > 0.
Source s and destination t are chosen randomly or arbitrarily.
(we assume that there is no edge (s, t)).
Linear latency functions l(x) = ax + b, a, b ≥ 0:

1 Independent coefficients model: two fixed distributions A and
B, and each edge is independently given a latency function
l(x) = ax + b, where a and b are drawn independently from A
and B, respectively.

2 1/x model: each edge present in the graph (independently) has
the latency function l(x) = x with probability q and l(x) = 1
with probability 1− q.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 40/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The model

Probability distribution oven graphs and edge latency
functions.
Graph G distributed according to the standard Erdös-Renyi
G(n, p) model. For a fixed n ≥ 2, each edge is present
independently with probability p. We assume that
p = Ω(n−1/2+ε) for some ε > 0.
Source s and destination t are chosen randomly or arbitrarily.
(we assume that there is no edge (s, t)).
Linear latency functions l(x) = ax + b, a, b ≥ 0:

1 Independent coefficients model: two fixed distributions A and
B, and each edge is independently given a latency function
l(x) = ax + b, where a and b are drawn independently from A
and B, respectively.

2 1/x model: each edge present in the graph (independently) has
the latency function l(x) = x with probability q and l(x) = 1
with probability 1− q.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 40/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

The model

Probability distribution oven graphs and edge latency
functions.
Graph G distributed according to the standard Erdös-Renyi
G(n, p) model. For a fixed n ≥ 2, each edge is present
independently with probability p. We assume that
p = Ω(n−1/2+ε) for some ε > 0.
Source s and destination t are chosen randomly or arbitrarily.
(we assume that there is no edge (s, t)).
Linear latency functions l(x) = ax + b, a, b ≥ 0:

1 Independent coefficients model: two fixed distributions A and
B, and each edge is independently given a latency function
l(x) = ax + b, where a and b are drawn independently from A
and B, respectively.

2 1/x model: each edge present in the graph (independently) has
the latency function l(x) = x with probability q and l(x) = 1
with probability 1− q.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 40/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Main results

Theorem (Independent coefficients model)

Let A and B be reasonable distributions. There is a constant
p = p(A,B) > 1 such that, with high probability, a random
network (G , l) admits a choice of traffic rate r such that the
Braess ration of the instance (G , r , l) is at least p.

Theorem (The 1/x model)

There is a traffic rate R = R(n, p, q) such that, with high
probability as n→∞, the Braess ratio of a random n-node
network from G(n, p, q) with traffic rate R is at least

4− 3pq

3− 2pq
.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 41/42

Introduction
Approximation Algorithms - Inapproximability results

Frequency of Braess’s Paradox

Main results

Theorem (Independent coefficients model)

Let A and B be reasonable distributions. There is a constant
p = p(A,B) > 1 such that, with high probability, a random
network (G , l) admits a choice of traffic rate r such that the
Braess ration of the instance (G , r , l) is at least p.

Theorem (The 1/x model)

There is a traffic rate R = R(n, p, q) such that, with high
probability as n→∞, the Braess ratio of a random n-node
network from G(n, p, q) with traffic rate R is at least

4− 3pq

3− 2pq
.

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 41/42

THANK YOU!

Algorithmic Game Theory NETWORK DESIGN AND THE BRAESS PARADOX 42/42

	Introduction
	Approximation Algorithms - Inapproximability results
	Frequency of Braess's Paradox
	Appendix
	

