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Summary

John Nash: Every Game has a (Mixed) Nash Equilibrium.
C.S. : How hard is to compute a Nash Equilibrium?
Outline of the talk:

Complexity Classes for Search Problems vs Complexity Classes for
Decision Problems (NP vs FNP).
The class TFNP and its problems that can be grouped according to
a non-constructive existence proof:

PPA and PPAD
PLS
PPP

The problem NASH and its computational complexity. (will be left for
next Thursday).
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Decision vs Search Problems

A language L ⊆ Σ? is in NP if and only if there is a polynomially
decidable and polynomially balanced relation RL such that
L = {x : (x , y) ∈ RL for some y}.
Each decision problem L, Has a corresponding search problem,
SL.
Given input x ∈ Σ?, return a y ∈ Σ?, such that (x , y) ∈ RL, if such
a y exists, otherwise return the string “no”.
For NP-problems we define the class containing their search
version to be FNP.
FP contains the problems of FNP for which a poly-time algorithm is
known.
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Reductions for search problems

Polynomial time reductions between two search problems A,B:
∃f ,g s.t. RA(x ,g(y)) ⇐⇒ RB(f (x), y).
f produces an instance f (x) of the function probelm B such that
we can construct an output g(y) for x from any correct output y of
f (x).
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Which one is harder?

SAT is complete for NP.
FSAT is complete for FNP (a-la-cook proof), That is find a
satisfying assignment.
Solving FSAT immediately solves SAT.
There exist a poly-time algorithm for FSAT based on the self
reducibility of SAT whith n-calls to SAT.

Theorem
FP = FNP if and only if P = NP
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The class TFNP

Contains the search problems for which RL is total.
Telling whether RL is total is undecidable← TFNP is a semantic
class.
Semantic Classes are not known to contain complete problems.
FP ⊆ TFNP ⊆ FNP.
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TFNP separation results

TFNP = F(NP ∩ coNP).
NP contains problems with “yes” certificate y s.t. R1(x , y).
coNP contains problems with “no” certificate z s.t. R2(x , z)
For TFNP ⊆ F(NP ∩ coNP) let R1 = R and R2 = ∅.
For F(NP ∩ coNP)] ⊆ TFNP let R = R1 ∪ R2.

An FNP-complete problem is in TFNP if and only if NP = coNP.
“if” part comes from the above
“only if”: Assume that FSAT reduces to the FNP-complete problem
SR , and that SR ∈ TFNP
Any unsat formula ϕ has a “no” certificate y , s.t. R(f (ϕ), y), and
g(y) =“no”
y is guaranteed to exist as R is total, thus SAT is in NP.
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Proofs of existence and the subclasses of TFNP

Polynomial Local Search (PLS): Every directed acyclic graph
has a sink.
Polynomial Pidgeonhole Principle (PPP): If a function maps n
elements to n − 1 elements, then there is a collision.
Polynomial Parity Argument (PPA): If an undirected graph has
an odd degree node, then it must have another odd degree node.
Polynomial Parity Argument Directed (PPAD): If a directed
graph has an unbalanced node (indegree6= outdegree), then it
must have another unbalanced node.
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The class PPA (An example)

ANOTHER HAMILTON CYCLE
Any graph with odd degree nodes has an even number of
hamilton cycles through edge xy

Take a HC and remove edge xy to obtain a Hamilton Path
Fix x as an endpoint and start rotating from the other end
Each hamilton path has two valid neighbours (d = 3) except the
paths with endpoints x , y
Parity Argument: At least two such HP’s must exist
Add edge x , y
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The class PPAD (An example)

2DSPERNER

Sperner’s Lemma on triangulated plannar graphs: Consider an
arbitrary coloring (0,1,2) on a plannar triangulated graph, then
there exists an even number of trichromatic triangles.
The computational problem that arrises for this lemma: The outer
face is one trichromatic triangle, can u fing a secong one?
When the graph coloring is given explicitly it is easy
Instead we have an algorithm (cirquit) that given a vertice (v ),
after poly-time it returns the color of v .
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The class PPAD (An example) II

Each original vertex obtains each own color
No vertex on the edge uv contains the color 3− c(u)− c(v),
where c is the coloring function.
Add external 0-1 edges
Traverse the triangles using 0-1 edges (doors)
A room w/o a door must be trichromatic
The process cannot exit the triangle and cannot fold upon itself
The tour leaves 0 nodes to the right, hence we have direction.
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The class PPA (Formal Definition)

Let A be a problem and M the associated poly-time TM.
Let x be an input of A.
The configuration space C(x) of M on input x is Σp(|x |).
For c ∈ C(x), M outputs in O(p(n)) time a set of at most two
configurations, namely M(x , c).

M(x , c) may be empty.
c, c′ are neibours, [c, c′] ∈ G(x), iff c ∈ M(c′, x) and c′ ∈ M(c, x).

G(x) is a symmetric graph of degree at most two.
It is the implicit search graph of the problem.

Let M(x ,0 . . . 0) = 1 . . . 1, and 0 . . . 0 ∈ M(x ,1 . . . 1), hence 0 . . . 0
is the standart leaf.
PPA: “Given x , find a leaf of G(x) other than 0 . . . 0.”
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ANOTHER HAMILTON CYCLE is in PPA

Let x be the input: (G,h) the graph and a hamilton cycle.
Cx , the configuration space of x contains encodings of valid
Hamilton Paths and other irrelevant strings.
On input x ∈ Cx machine M outputs in time O(p(n))) a set M(x , c
of, at most, two neigbors of a valid Hamilton Path
c and c′ are neigbors ([c, c′] ∈ G(x)) iff c ∈ M(c′, x) and
c′ ∈ M(c, x), in the neigboring graph of “valid” Hamilton Paths
the standart leaf is the Hamilton Path that occured from the
removal or edge xy .
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The class PPAD (I)

Same as PPA with the following differences:
M(x , c) = In(x , c) ∪ Out(x , c) is an ordered pair of configs whith
|In(x , c)| ≤ 1 and |Out(x , c)| ≤ 1.
G(x) is now directed (c, c′) ∈ G(x) iff c ∈ In(x , c′) and
c′ ∈ Out(x , c).
We search for a node (not the standart one) with
|In(x , c)|+ |Out(x , c)| = 1, i.e. any other source or sink.
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2DSPERNER is in PPAD

Let x be the input: A triangle, a triangulation and a valid color
assignment (in terms of a cirquit/algorithm)

we need some sort of guarantee of the validity of the input.

Cx is the configuration space of x , encodings of the active
sub-triangles of the triangulation
M(x , c) = In(x , c) ∪Out(x , c) where:

In(x , c) is the sub-triangle we came from.
Out(x , c) is the sub-triangle we are heading into.

c and c′ are neighbors iff [c, c′] ∈ G(x)) iff c ∈ M(c′, x) and
c′ ∈ M(c, x)

The standart node is the outer face of the triangulated graph.
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The class PPAD (II)
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END OF THE LINE

In order to fix the setting for the next talk consider the following
computational problem:

END OF THE LINE: Given two cirquits S and P, each with n input
and output bits, such that S(P(0n)) 6= 0n = P(S(0n)), find an input
x ∈ {0,1}n s.t. P(S(x)) 6= x or S(P(x)) 6= x 6= 0n

The above problem is PPAD-complete (recall the proof that
CIRQUITSAT is NP complete)
From now on we can say that PPAD contains the problems that
reduce to END OF THE LINE.
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THANK YOU!!
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