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@ John Nash: Every Game has a (Mixed) Nash Equilibrium.

@ C.S. : How hard is to compute a Nash Equilibrium?
@ Outline of the talk:
e Complexity Classes for Search Problems vs Complexity Classes for
Decision Problems (NP vs FNP).
e The class TENP and its problems that can be grouped according to
a non-constructive existence proof:

PPA and PPAD
PLS
PPP

e The problem NASH and its computational complexity. (will be left for
next Thursday).
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Decision vs Search Problems

@ Alanguage L C ¥* isin NP if and only if there is a polynomially
decidable and polynomially balanced relation R; such that
L={x:(x,y) € R forsome y}.

@ Each decision problem L, Has a corresponding search problem,
Si.

@ Given input x € ¥*, return a y € ¥*, such that (x, y) € Ry, if such
a y exists, otherwise return the string “no”.

@ For NP-problems we define the class containing their search
version to be FNP.

@ FP contains the problems of FNP for which a poly-time algorithm is
known.
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Reductions for search problems

@ Polynomial time reductions between two search problems A, B:
f, g s.t. Ra(x,9(y)) < Rs(f(x),y).
@ f produces an instance f(x) of the function probelm B such that

we can construct an output g(y) for x from any correct output y of
f(x).
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Which one is harder?

@ SAT is complete for NP.

@ FSAT is complete for FNP (a-la-cook proof), That is find a
satisfying assignment.

@ Solving FSAT immediately solves SAT.

@ There exist a poly-time algorithm for FSAT based on the self
reducibility of SAT whith n-calls to SAT.

FP = ENP if and only if P = NP \
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The class TFNP

@ Contains the search problems for which Ry is total.

@ Telling whether R, is total is undecidable < TFNP is a semantic
class.

@ Semantic Classes are not known to contain complete problems.
@ FP C TFNP C FNP.
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TFNP separation results

@ TFNP = F(NP N coNP).
e NP contains problems with “yes” certificate y s.t. Ry(x, y).
@ coNP contains problems with “no” certificate z s.t. Rao(x, 2)
e For TENP C F(NP N coNP) let Ry = Rand R, = 0.
e For F(NP N coNP)] C TFNP let R = R; U R..
@ An FNP-complete problem is in TENP if and only if NP = coNP.
e “if” part comes from the above
@ “only if”: Assume that FSAT reduces to the FNP-complete problem
Sr, and that Sg € TENP
Any unsat formula ¢ has a “no” certificate y, s.t. R(f(¥), y), and

g(y) :(inoﬂ
y is guaranteed to exist as R is total, thus SAT is in NP.
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Proofs of existence and the subclasses of TFNP

@ Polynomial Local Search (PLS): Every directed acyclic graph
has a sink.

@ Polynomial Pidgeonhole Principle (PPP): If a function maps n
elements to n — 1 elements, then there is a collision.

@ Polynomial Parity Argument (PPA): If an undirected graph has
an odd degree node, then it must have another odd degree node.

@ Polynomial Parity Argument Directed (PPAD): If a directed
graph has an unbalanced node (indegree+# outdegree), then it
must have another unbalanced node.
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The class PPA (An example)

@ ANOTHER HAMILTON CYCLE

@ Any graph with odd degree nodes has an even number of
hamilton cycles through edge xy

Take a HC and remove edge xy to obtain a Hamilton Path

Fix x as an endpoint and start rotating from the other end

Each hamilton path has two valid neighbours (d = 3) except the

paths with endpoints x, y

Parity Argument: At least two such HP’s must exist

Add edge x,y

@ ¢y
0 ety
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The class PPAD (An example)

@ 2DSPERNER

@ Sperner’s Lemma on triangulated plannar graphs: Consider an
arbitrary coloring (0, 1,2) on a plannar triangulated graph, then
there exists an even number of trichromatic triangles.

@ The computational problem that arrises for this lemma: The outer
face is one trichromatic triangle, can u fing a secong one?

@ When the graph coloring is given explicitly it is easy
@ Instead we have an algorithm (cirquit) that given a vertice (v),
after poly-time it returns the color of v.
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The class PPAD (An example) Il

@ Each original vertex obtains each own color

@ No vertex on the edge uv contains the color 3 — c(u) — ¢(v),
where c is the coloring function.

@ Add external 0-1 edges

@ Traverse the triangles using 0-1 edges (doors)

@ A room w/o a door must be trichromatic

@ The process cannot exit the triangle and cannot fold upon itself
@ The tour leaves 0 nodes to the right, hence we have direction.
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The class PPA (Formal Definition)

Let A be a problem and M the associated poly-time TM.
Let x be an input of A.
The configuration space C(x) of M on input x is ZP(X]),

For ¢ € C(x), M outputs in O(p(n)) time a set of at most two
configurations, namely M(x, c).

e M(x,c) may be empty.

@ ¢, ¢ are neibours, [c, c'] € G(x), iff c € M(c/,x) and ¢’ € M(c, x).
o G(x) is a symmetric graph of degree at most two.
o ltis the implicit search graph of the problem.

@ Let M(x,0...0)=1...1,and0...0 € M(x,1...1),hence0...0
is the standart leaf.

@ PPA: “Given x, find a leaf of G(x) otherthan0...0”
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ANOTHER HAMILTON CYCLE is in PPA

@ Let x be the input: (G, h) the graph and a hamilton cycle.

@ C,, the configuration space of x contains encodings of valid
Hamilton Paths and other irrelevant strings.

@ On input x € Cx machine M outputs in time O(p(n))) a set M(x, ¢
of, at most, two neigbors of a valid Hamilton Path

@ cand ¢ are neigbors ([c, '] € G(x)) iff c € M(c’, x) and
¢’ € M(c, x), in the neigboring graph of “valid” Hamilton Paths

@ the standart leaf is the Hamilton Path that occured from the
removal or edge xy.
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The class PPAD (l)

Same as PPA with the following differences:
@ M(x,c) =In(x, c) UOut(x, c) is an ordered pair of configs whith
[In(x, c)| <1 and |Out(x, c)| < 1.
@ G(x) is now directed (c, ¢’) € G(x) iff ¢ € In(x, ¢) and
¢’ € Out(x, c).
@ We search for a node (not the standart one) with
lIn(x, ¢)| + |Out(x, ¢)| = 1, i.e. any other source or sink.
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2DSPERNER is in PPAD

@ Let x be the input: A triangle, a triangulation and a valid color
assignment (in terms of a cirquit/algorithm)

e we need some sort of guarantee of the validity of the input.
@ Cy is the configuration space of x, encodings of the active
sub-triangles of the triangulation
@ M(x,c) = In(x,c) U Out(x, c) where:
e In(x,c) is the sub-triangle we came from.
e Out(x,c) is the sub-triangle we are heading into.

@ cand ¢ are neighbors iff [c, ¢'] € G(x)) iff c € M(c’, x) and
¢ € M(c, x)
@ The standart node is the outer face of the triangulated graph.
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The class PPAD (ll)

Standard
source

Y
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END OF THE LINE

@ In order to fix the setting for the next talk consider the following
computational problem:
o END OF THE LINE: Given two cirquits S and P, each with n input
and output bits, such that S(P(0")) # 0" = P(S(0")), find an input
x € {0,1}"s.t. P(S(x)) # x or S(P(x)) # x # 0"
@ The above problem is PPAD-complete (recall the proof that
CIRQUITSAT is NP complete)

@ From now on we can say that PPAD contains the problems that
reduce to END OF THE LINE.
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THANK YOU!! )
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