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Local Search Problems

Definition

A local search problem Π is given by its set of instances IΠ:

For every I ∈ IΠ, we have a set of feasible solutions F(I ) and
an objective function c : F(I )→ N.

For every S ∈ F(I ), we have a neighborhood N (S , I ) ⊆ F(I )

Given an I , we seek for a locally optimal solution S∗:
c(S) R c(S∗),∀S ∈ N (S∗, I ) (a solution with no better neighbor).

Reminder

A Pure Nash Equilibrium (PNE) is a state s = (s1, · · · , sn) s.t.
for each i :
ui (s1, . . . , si , . . . , sn) ≥ ui (s1, . . . , s

′
i , . . . , sn),∀s ′i ∈ Si .

A game is symmetric of all S ′i s are the same and all ui ’s are
identical symmetric functions of n − 1 variables.
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Congestion Games

Consider a graph with:

Nodes: S1 × Sn

Edges: (s, s ′), if s and s ′ differ only in one component
(the i th) and ui (s ′) > ui (s)

If this graph is acyclic, then there is a pure Nash Equilibrium!

Congestion Games

A Congestion Game M = (N,E , (Si )i∈N, d) is a tuple:

N a set of players

E a set of resources

Si action sets, with Si ⊆ 2E

Delay function d : E × {0, 1, . . . , n} → N (denoted as de(j),
nondecreasing in j)



Introduction PLS-Completeness Matroids & Congestion Games

Introduction

Congestion Games

Payoffs:
If s = (s1, s2, . . . , sn) a state, let fs(e) = |{i : e ∈ si}|. Then:

ci (s) =
∑
e∈si

de(fs(e))

Theorem

Every Congestion Game has a Pure Nash Equilibrium.

In a network congestion game the families of Si are presented
implicitly as paths in a network:
Given (V ,E ), nodes ai , bi for each player i and a delay
function, Edges are palying the role of resources, and the
subset of E available to player i is the set of all paths from ai

to bi .
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The Class PLS

The class PLS contains all local search problems with
polynomial-time searchable neighborhoods:

Definition

A local search problem Π belongs to class PLS if there exists
polynomial-time algorihtms for the following:

An algorithm A that computes for every I of Π an initial
feasible solution S0 ∈ F(I ).

An algorithm B that computes for every I of Π and every
S ∈ F(I ) the objective value c(S).

An algorithm C that determines ∀I ∈ IΠ,∀S ∈ F(I ) whether
S is locally optimal, and if not finds a better solution in
N (S , I ).
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The Class PLS

FP ⊆ PLS ⊆ TFNP

We now need a notion of reduction:

Definition

A problem Π1 in PLS is PLS-reducible to a problem Π2 in PLS, if
there exist polynomial-time computable functions f and g such
that:

1 Function f maps instances I of Π1 to instances f (I ) of Π2.

2 Function g maps pairs (S2, I ) (S2 is a solution of f (I )) to
solutions S1 of I .

3 For all instances I of Π1 and all solutions S2 of f (I ):
If S2 is a local optimum of instance f (I ), then g(S2, I ) is a
local optimum of I .
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Complexity of Congestion Games

A network potential game is symmetric if all players have the
same endpoints a and b.

Theorem

There is a polynomial-time algorithm for finding a Pure Nash
Equilibrium in symmetric network congestion games.

Theorem

It is PLS-complete to find a Pure Nash Equilibrium in network
congestion games of the following sorts:

1 General congestion games.

2 Symmetric congestion games.

3 Assymetric network congestion games.
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Complexity of Congestion Games

The proof for (1) is based on a reduction from the (known to
be) PLS-complete POSNAE3FLIP:

Definition (POSNAE3FLIP)

Given an instance of not-all-equal-3SAT with weights on its clauses
and containing positive literals only, find a truth assignment
satisfying clauses whose total weight cannot be improved by
flipping a variable.

So,

For each 3-clause c of weight w , we have ec and e ′c , with
delay:

0, if there are 2 or fewer players
w , otherwise

Players are variables!
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Complexity of Congestion Games

Player x has 2 strategies:
one containing all ec ’s for clauses that contain x
one containing all e′

c ’s for the same clauses

Any Nash Equilibrium of the congestion game is a local
optimum of the POSNAE3FLIP instance! �

The proof of (2) is a reduction of the non-symmetric to the
symmetric case:

Let S ′i = {s ∪ {ei} : s ∈ Si}∀i

ei ’s are distinct new resources with dei (j) = 0, if j = 1, and
dei (j) = M, if j ≥ 2

Consider the symmetric game with the same edges, and
common strategy set

⋃
i S ′i .

Any equilibrium will have 1 player using S ′i , and hence will
correspond to (by omitting the ei ’s) a specific equilibium of
the original game. �
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Non-Atomic Congestion Games

An non-atomic congestion game is the limit of a congestion
game as n→∞.

We are given a network (V ,E ) and endpoint pairs (ai , bi ),
i = 1, . . . , k , and
flow requirements ri (rationals adding to 1)

For each edge we have a (non-decreasing) delay function
de : [0, 1]→ R+.

For a path p and a flow f : dp(f ) =
∑

e∈p de(f ).

We want to find a k-commodity flow f that is a Nash
Eqilibrium, that is, any flow between ai and bi (for all pairs
ai ,bi ) has a delay at no larger than any other ai -bi path p′.

This problem can be rephrased as a convex optimization
problem, and so it can be solved by the Ellipsoid algorithm.
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Non-Atomic Congestion Games

We say that a state s = (s1, . . . , sn is an ε-approximate Nash
Equilibrium if ∀ i, every flow path p carrying at least ε units of
flow and avery ai − bi path p′, the delay dp(f ) is no larger
than dp′(f )− ε (no player has a defection thet decreases his
delay more than ε).

By making a Lipschitz assumption for the latency functions de :
There exists a constant C , such that, ∀x , y : 0 ≤ x < y ≤ 1:

|de(y)− de(x)| ≤ C |y − x |

we have the following result:

Theorem

Given a non-atomic congestion game with delay functions satisfying
the Lipschitz assumption with constant C , an ε-approximate Nash
Equilibrium can be computed in time poly(|E |,C , ε1)
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Potential Games

Definition

A game is called Exact Potential Game if there is a function φ, s.t.
for any edge of the Nash Dynamic Graph (s, s ′) with defector i we
have φ(s ′)− φ(s) = ui (s ′)− ui (s).

Theorem

Any exact potential game is isomorphic to a congestion game.

The class of general potential games essentially comprises all
of PLS:
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Potential Games

Theorem

For any problem in PLS with instances I there is a family of
general potential games (indexed by I ) such that, for instance x ,
the game Gx has poly(|x |) players each with strategy set that
includes the alphabet Σ, and such that the set of Pure Nash
Equilibria of Gx is precicely the local optima of x .
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Matroids

Definition

A tuple M = (R, I) is a matroid if: R is a finite set of resources,
and I is a (nonempty) family of subsets of R s.t.:
-If I ∈ I and J ⊆ I , then J ∈ I, and
-If I , J ∈ I and |J| < |I |, then ∃i ∈ I \ J : J ∪ {i} ∈ I.

Let I ⊆ R. If I ∈ I, then we call I an indepedent set or R.
All maximal indepedent sets of I have the same size, denoted
by rk(M) of the matroid M.
A maximal indepedent set B is called a basis of M.
We call a matroid weighted if there is a function w : R → N.
We want to find a basis of a minimum weight, where the
weight of an indepedent set is given by:

w(I ) =
∑
r∈I

w(r)
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Matroids

Such a basis can be found by a greedy algorithm.

Defintion

A congestion game Γ = (N,R, (Si )i∈N , (dr )r∈R) is called a matroid
congestion game if for every player i ∈ N, Mi = (R, Ii ) with
Ii = {I ⊆ S |S ∈ Si} is a matroid and Si is a set of bases of Mi .
Additionally, we denote by

rk(Γ) = max
i∈N

rk(Mi )

the rank of the matroid congestion game Γ.
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Matroids

The main result is the following:

Theorem

Let Γ be a matroid congestion game. Then, players reach a Nash
Equilibrium after at most n2m · rk(Γ) best responses. In the case
of identical delay functions, players reach a Nash Equilibrium after
at most n2 · rk(Γ) best responses.

The matroid property is a sufficient (and necessary) condition
on the combinatorial structure of the players’ strategy spaces
guaranteeing fast convergence to Nash Equilibria!

The length of all best responce sequences are polynomially
bounded in the number of players and resources.



Introduction PLS-Completeness Matroids & Congestion Games

Matroids & Congestion Games

References

Alex Fabrikant, Christos Papadimitriou, Kunal Talwar, The
complexity of Pure Nash equilibria, on Proceedings of the
thirty-sixth annual ACM symposium on Theory of computing, 2004
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