PLS-Completeness

Matroids & Congestion Games

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

PLS-Completeness of computing a Pure Nash Equilibrium

A. Antonopoulos (N.T.U.A.) T.C.S. II: Algorithmic Game Theory

5/5/2011

PLS-Completeness

Matroids & Congestion Games

Introduction

Local Search Problems

Definition

A local search problem Π is given by its set of instances \mathcal{I}_{Π} :

- For every $l \in \mathcal{I}_{\Pi}$, we have a set of feasible solutions $\mathcal{F}(l)$ and an objective function $c : \mathcal{F}(l) \to \mathbb{N}$.
- For every $S \in \mathcal{F}(I)$, we have a neighborhood $\mathcal{N}(S,I) \subseteq \mathcal{F}(I)$

Given an *I*, we seek for a **locally optimal** solution S^* : $c(S) \stackrel{>}{\geq} c(S^*), \forall S \in \mathcal{N}(S^*, I)$ (a solution with <u>no</u> better neighbor).

Reminder

• A Pure Nash Equilibrium (PNE) is a state $s = (s_1, \dots, s_n)$ s.t. for each *i*:

 $u_i(s_1,\ldots,s_i,\ldots,s_n) \geq u_i(s_1,\ldots,s_i',\ldots,s_n), \forall s_i' \in S_i.$

• A game is symmetric of all S'_i s are the same and all u_i 's are identical symmetric functions of n-1 variables.

Introduction ○●○○○	PLS-Completeness	Matroids & Congestion Games
Introduction		
Congestion Games		

- Consider a graph with:
 - Nodes: $S_1 \times S_n$
 - Edges: (s, s'), if s and s' differ only in <u>one</u> component (the ith) and u_i(s') > u_i(s)
- If this graph is acyclic, then there is a pure Nash Equilibrium!

Congestion Games

- A Congestion Game $M = (N, E, (S_i)_{i \in \mathbb{N}}, d)$ is a tuple:
 - N a set of players
 - E a set of resources
 - S_i action sets, with $S_i \subseteq 2^E$
 - Delay function $d: E \times \{0, 1, \dots, n\} \to \mathbb{N}$ (denoted as $d_e(j)$, nondecreasing in j)

Introduction ○○●○○	PLS-Completeness 0000000	Matroids & Congestion Games
Introduction		

Congestion Games

• Payoffs: If $s = (s_1, s_2, \dots, s_n)$ a state, let $f_s(e) = |\{i : e \in s_i\}|$. Then: $c_i(s) = \sum_{e \in S_i} d_e(f_s(e))$

Theorem

Every Congestion Game has a Pure Nash Equilibrium.

In a network congestion game the families of S_i are presented implicitly as paths in a network:
 Given (V, E), nodes a_i, b_i for each player i and a delay function, Edges are palying the role of *resources*, and the subset of E available to player i is the set of all paths from a_i to b_i.

• The class **PLS** contains all local search problems with polynomial-time searchable neighborhoods:

Definition

A local search problem Π belongs to class **PLS** if there exists polynomial-time algorithms for the following:

- An algorithm A that computes for every I of Π an initial *feasible* solution $S^0 \in \mathcal{F}(I)$.
- An algorithm *B* that computes for every *I* of Π and every $S \in \mathcal{F}(I)$ the objective value c(S).
- An algorithm C that determines $\forall I \in \mathcal{I}_{\Pi}, \forall S \in \mathcal{F}(I)$ whether S is *locally optimal*, and if not finds a better solution in $\mathcal{N}(S, I)$.

PLS-Completeness

Matroids & Congestion Games

Introduction

The Class PLS

- $\mathbf{FP} \subseteq \mathbf{PLS} \subseteq \mathbf{TFNP}$
- We now need a notion of reduction:

Definition

A problem Π_1 in **PLS** is **PLS**-reducible to a problem Π_2 in **PLS**, if there exist polynomial-time computable functions f and g such that:

- Function f maps instances I of Π_1 to instances f(I) of Π_2 .
- Solution g maps pairs (S_2, I) $(S_2$ is a solution of f(I) to solutions S_1 of I.
- For all instances I of Π₁ and all solutions S₂ of f(I): If S₂ is a local optimum of instance f(I), then g(S₂, I) is a local optimum of I.

PLS-Completeness •000000 Matroids & Congestion Games

PLS-Competeness

Complexity of Congestion Games

• A network potential game is *symmetric* if all players have the same endpoints *a* and *b*.

Theorem

There is a polynomial-time algorithm for finding a Pure Nash Equilibrium in symmetric network congestion games.

Theorem

It is **PLS**-complete to find a Pure Nash Equilibrium in network congestion games of the following sorts:

- General congestion games.
- **2** Symmetric congestion games.
- 3 Assymetric network congestion games.

PLS-Completeness

Matroids & Congestion Games

PLS-Competeness

Complexity of Congestion Games

• The proof for (1) is based on a reduction from the (known to be) **PLS**-complete POSNAE3FLIP:

Definition (POSNAE3FLIP)

Given an instance of not-all-equal-3SAT with weights on its clauses and containing positive literals only, find a truth assignment satisfying clauses whose total weight <u>cannot</u> be improved by flipping a variable.

So,

- For each 3-clause c of weight w, we have e_c and e'_c , with delay:
 - 0, if there are 2 or fewer players
 - w, otherwise
- Players are variables!

PLS-Completeness

Matroids & Congestion Games

PLS-Competeness

Complexity of Congestion Games

- Player x has 2 strategies:
 - one containing all e_c 's for clauses that contain x
 - one containing all e_c' 's for the same clauses
- Any Nash Equilibrium of the congestion game is a **local optimum** of the POSNAE3FLIP instance!
- The proof of (2) is a reduction of the non-symmetric to the symmetric case:
- Let $S'_i = \{s \cup \{e_i\} : s \in S_i\} \forall i$
- e_i 's are distinct new resources with $d_{e_i}(j) = 0$, if j = 1, and $d_{e_i}(j) = M$, if $j \ge 2$
- Consider the symmetric game with the same edges, and common strategy set $\bigcup_i S'_i$.
- Any equilibrium will have 1 player using S_i, and hence will correspond to (by omitting the e_i's) a specific equilibium of the original game. □

PLS-Completeness

Matroids & Congestion Games

PLS-Competeness

Non-Atomic Congestion Games

- An non-atomic congestion game is the limit of a congestion game as $n \to \infty$.
- We are given a network (V, E) and endpoint pairs (a_i, b_i),
 i = 1,..., k, and
 flow requirements r_i (rationals adding to 1)
- For each edge we have a (non-decreasing) delay function $d_e: [0,1] \to \mathbb{R}^+$.
- For a path p and a flow $f: d_p(f) = \sum_{e \in p} d_e(f)$.
- We want to find a k-commodity flow f that is a Nash Eqilibrium, that is, any flow between a_i and b_i (for all pairs a_i,b_i) has a delay at no larger than any other a_i-b_i path p'.
- This problem can be rephrased as a convex optimization problem, and so it can be solved by the Ellipsoid algorithm.

PLS-Completeness

Matroids & Congestion Games

PLS-Competeness

Non-Atomic Congestion Games

- We say that a state s = (s₁,..., s_n is an ε-approximate Nash Equilibrium if ∀ i, every flow path p carrying at least ε units of flow and avery a_i b_i path p', the delay d_p(f) is no larger than d_{p'}(f) ε (no player has a defection thet decreases his delay more than ε).
- By making a Lipschitz assumption for the latency functions d_e: There exists a constant C, such that, ∀x, y : 0 ≤ x < y ≤ 1:

$$|d_e(y) - d_e(x)| \le C|y - x|$$

we have the following result:

Theorem

Given a non-atomic congestion game with delay functions satisfying the Lipschitz assumption with constant C, an ϵ -approximate Nash Equilibrium can be computed in time $poly(|E|, C, \epsilon^1)$

PLS-Completeness

Matroids & Congestion Games

PLS-Competeness

Potential Games

Definition

A game is called *Exact Potential Game* if there is a function ϕ , s.t. for any edge of the Nash Dynamic Graph (s, s') with defector i we have $\phi(s') - \phi(s) = u_i(s') - u_i(s)$.

Theorem

Any exact potential game is isomorphic to a congestion game.

 The class of general potential games essentially comprises all of PLS:

PLS-Competeness

Potential Games

PLS-Completeness

Matroids & Congestion Games

Theorem

For any problem in **PLS** with instances *I* there is a family of general potential games (indexed by *I*) such that, for instance *x*, the game G_x has poly(|x|) players each with strategy set that includes the alphabet Σ , and such that the set of Pure Nash Equilibria of G_x is precicely the *local optima* of *x*.

Introduction	

PLS-Completeness

Matroids & Congestion Games •000

Matroids & Congestion Games

Matroids

Definition

A tuple $M = (\mathcal{R}, \mathcal{I})$ is a *matroid* if: \mathcal{R} is a finite set of resources, and \mathcal{I} is a (nonempty) family of subsets of \mathcal{R} s.t.: -If $I \in \mathcal{I}$ and $J \subseteq I$, then $J \in \mathcal{I}$, and -If $I, J \in \mathcal{I}$ and |J| < |I|, then $\exists i \in I \setminus J : J \cup \{i\} \in \mathcal{I}$.

- Let $I \subseteq \mathcal{R}$. If $I \in \mathcal{I}$, then we call I an **indepedent set** or \mathcal{R} .
- All maximal indepedent sets of *I* have the same size, denoted by rk(M) of the matroid M.
- A maximal indepedent set B is called a basis of M.
- We call a matroid weighted if there is a function $w : \mathcal{R} \to \mathbb{N}$.
- We want to find a basis of a minimum weight, where the weight of an indepedent set is given by:

$$w(I) = \sum_{r \in I} w(r)$$

Introduction 00000	PLS-Completeness	Matroids & Congestion Games ○●○○
Matroids & Congestion Games		
Matroids		

• Such a basis can be found by a greedy algorithm.

Defintion

A congestion game $\Gamma = (N, \mathcal{R}, (S_i)_{i \in N}, (d_r)_{r \in \mathcal{R}})$ is called a *matroid* congestion game if for every player $i \in N$, $M_i = (\mathcal{R}, \mathcal{I}_i)$ with $\mathcal{I}_i = \{I \subseteq S | S \in S_i\}$ is a matroid and S_i is a set of bases of M_i . Additionally, we denote by

$$rk(\Gamma) = \max_{i \in N} rk(M_i)$$

the rank of the matroid congestion game Γ .

PLS-Completeness

Matroids & Congestion Games 0000

Matroids & Congestion Games

Matroids

• The main result is the following:

Theorem

Let Γ be a matroid congestion game. Then, players reach a Nash Equilibrium after at most $n^2m \cdot rk(\Gamma)$ best responses. In the case of identical delay functions, players reach a Nash Equilibrium after at most $n^2 \cdot rk(\Gamma)$ best responses.

- The matroid property is a sufficient (and necessary) condition on the combinatorial structure of the players' strategy spaces guaranteeing fast convergence to Nash Equilibria!
- The length of all best responce sequences are polynomially bounded in the number of players and resources.

Introduction 00000	PLS-Completeness 0000000	Matroids & Congestion Games 000●
Matroids & Congestion Games		
References		

- Alex Fabrikant, Christos Papadimitriou, Kunal Talwar, The complexity of Pure Nash equilibria, on Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, 2004
- Heiner Ackermann, Heiko Röglin, Berthold Vöcking, On the impact of combinatorial structure on congestion games J. ACM 55(6), 2008
- David S. Johnson, Christos H. Papadimtriou, Mihalis Yannakakis, **How easy is local search?** J. Comput. Syst. Sci., 37:79-100, August 1988.
- Christos H. Papadimitriou, **On the complexity of the parity argument and other inefficient proofs of existence** J. Comput. Syst.Sci., 48:498-532, June 1994.

Thank You!