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Abstract 1 Introduction

We prove the existence of tolls to induce multicommodi/e analyze when tolls on resource usage can induce
ity, heterogeneous network users that independently chogggrs to behave in a way that maximizes some global
routes minimizing their own linear function of tolls Versu%bjective in systems where users selfishly select re-

latency to collectively form the traffic pattern of a minimum

. ! - sources to meet their individual demands. We assume
average latency flow. This generalizes both the previous

known results of the existence of tolls for multicommodit)_;, at the users (also known as the ggents) are infinites-
homogeneous users [1] and for single commodity, heterofBally small, and therefore the action of a single user
neous users [3]. does not affect others considerably.

Unlike previous proofs for single commodity users in  In the network setting, each edge has an associated
general graphs, our proof is constructive - it does not rely pitency function that is a nondecreasing function of
a fixed point theorem - and results in a simple polynomig;e congestionof the edge: the number of users that
sized linear program to compute tolls when the number ol v edge. Without tolls, users seek a least latency

different types of users is bounded by a polynomial. . o
We show that our proof gives a complete characteriZ8th from their source to destination, where latency

tion of flows that are enforceable by tolls. In particular, tol@f @ path is the sum of the latencies of the edges in
exist to induce any traffic pattern that is the result of min@ path [14]. The resulting flow is calledash flow
mizing an arbitrary function fronR”(%) to the reals that is or a Wardrop equilibrium The network owner, on the
nondecreasing in each of its arguments. Thus, tolls exisioiher hand, may desire to maximize social welfare by
induce flows with minimum average weighted latency, mi%inimizing average latency experienced by users, the
mum maximum latency, and other natural objectives. system optimalow. The Nash flow may be far from the

We give an exponential bound on tolls that is mdepen—Stem optimal flow [8, 12]. By placing tolls on the use

S
dent of the number of network users and the number of C(ﬁ . .
modities. We use this to show that multicommodity tolls alj ©€dges, the owner hopes to induce users to selfishly

exist when users are not from discrete classes, but inst8&£Ct @ system optimal flow. With tolls, users seek
define a general function that trades off latency versus t&)l minimize some function of latency plus toll. Each

preference. user may have a different trade-off of latency for toll.
Finally, we show that our result extends to very generidbr agent:, we can represent this trade-off as a latency
frameworks. In particular, we show that tolls exist to inmultiplier, «(a) that converts latency into dollars.
duce the Nash equilibrium of general nonatomic congestion This setting has been considered previously in the
games to be system optimal. In particular, tolls exist everansportation and computer science literature. For the
when 1) latencies depend on user type; 2) latency functiaese whernx(a) = 1 for all agentsa, it is well known
are nonseparable functions of traffic on edges; 3) the latetiagat the Nash flow with marginal cost tolls is a system
of a setS is an arbitrary function of the latencies of the resptimal flow [1, 9]. For distincty, early work describes
sources contained if. Our exponential bound on size okolutions that toll each user differently according to
tolls also holds in this case; and we give an example otteeir aversion to latency [4, 13]. This is unsatisfying
congestion game that shows this is tight: it requires tolls tteatd hard to enforce, as it requires knowing each user’s
are exponential in the size of the game. « value.
Three distinct attempts have been made to ad-
dress this problem. Dial [5] shows thatweighted



marginal cost tolls induce a flow that minimizes theainimizing maximum toll.
a-weighted average latency, even for multicommodity We prove that any enforceable congestion can be
traffic. While this is a satisfying result, such a marginahforced using tolls bounded by a value that is inde-
cost toll result holds for this specific global objectivpendent of the number of users and the number of com-
function only, as it is a result of relation between thmodities (but depends exponentially on the size of the
users objective functions and the gradient of the gloledtwork). We use this, together with a compactness ar-
objective function. Cole, Dodis, and Roughgarden [3Jument, to show that tolls also exist when users are not
show that for the case when all agents have the sanwen discrete classes, but instead define a general func-
source and destination, then tolls exist so that the Naiim that trades off latency versus toll preference.
flow with tolls minimizes average latency. They give We show that our results on the existence of tolls
an existential proof and pose as open questions bothdlktend to more general nonatomic congestion games.
existence of a constructive proof, and the existenceradr example, they hold in abstract resource allocation
tolls in the multicommodity setting. settings; they hold when latencies are arbitrary, non-
We generalize all of these results. We prove that feeparable functions of resource use; they hold when la-
any minimal congestigrthere exist tolls such that theencies depend on user type; they hold when the latency
Nash flow induced bynulticommodity heterogeneousof a setS is an arbitrary function of the latencies of the
users is the given congestion. This gives a comple&sources contained is
characterization of flows that are enforceable by tolls. Two examples illustrate some uses of these gener-
In particular, tolls exist to induce any traffic patteralizations: In a wireless network, latency at a link does
that is the result of minimizing an arbitrary functiomot only depend upon the usage of that link but also de-
from RZ(S) to the reals that is nondecreasing in eagends upon the usage of the neighboring links, because
of its arguments. Thus, tolls exist to minimize avera@é interference. This indicates that it is useful to con-
weighted latency flows, maximum latency flows, arglder nonseparable latency functions. It is also useful to
other natural objectives. consider latency functions that treat different commod-
Unlike the proof of Cole et al. [3], our proof is conity traffic differently: On the Internet some users may
structive and does not rely on a fixed point theoresend TCP traffic and some may send UDP. These two
It is obtained using linear programming duality, and &gpes of traffic have different effects on system behav-
a consequence, we get a simple polynomial time algor.
rithm to compute the tolls for a bounded numberof  Our exponential bound on size of tolls also holds
types via linear programming. Our linear program (L) this case; and we give an example of a general
is distinct from the one used in [3] in two important assongestion game that shows this is tight: it requires tolls
pects: First, our LP gives a direct proof of the existenteat are exponential in the size of the game.
of tolls. The LP in [3] offers no such proof - its correct-  In this proceedings, Karakostas and Kolliopoulos
ness relies on establishing the existence of tolls vialgo give a constructive proof to show that tolls exist to
separate fixed point argument. Second, our LP doesingiice the minimum average latency multicommodity
assume any knowledge of the decomposition of the sfiew [7].
tem optimal flow by an agents value. The constraints
used in [3] do require this. This is a strong assumptioh, Problem Statement and Preliminaries

as there are many ways that a flow can be decompogethis section we give a formal statement of the prob-
into paths, but perhaps only one of these decompasin considered in this paper. We define the problem in
tions corresponds to the set of paths used by users whe different models: the discrete model and the con-
the right set of tolls are imposed. Fleischer [6] gives @&Auous model. The discrete model is a special case
example to demonstrate that the correct decompositisfrthe continuous model, where there are only a finite
may depend om. A second consequence of the limmumber of different types of agents. This model is sim-
ear program approach we give is that we can compgter to understand; we will first prove our results in the
a set of feasible tolls that minimiznylinear objective discrete setting, and then generalize it to the continuous
function of tolls, including minimizing sum of tolls, orsetting using the existence result and an upper bound on



the tolls that we prove in the discrete model. lack of coordination between them causes inefficiency
" gi K both the di in the system (see, for example, Braess’s paradox [11]).

dMl;]tlcommo ity netwc()jr IS. In both t N |scre|te In order to overcome this, a central authority sets tolls
a_m t edfzontlnuousl( mh(? s’ we_ are fglveg_mu " on the edges of the network, to direct the selfish behav-
tlcorr;]mo |tyhnetwor, whic codn5|(sjts or a |re|cted10r of the agents toward a social optimum. Formally,
graph & W'_t vertex setV” and edge set, a 138" \ye denote the toll on an edgeby 7.. An agent that
tency functionl, forKeverye € FE, K commodities uses a path has to pay a toll o, := 5, 7. and ex-

. . i ecp

{(source, dest, d;)};—,, and a parameten; (which periences a delay @f(f) := Zeep le(fe). We assume
e _ : ¥® cost observed by an agent of commoditysing a
the sensitivity of theith commodity to latency. EaChpathp € P is of the formail,(f) + 7, wherea; is

cor_nmodityz’ s specifieq by a triplgsource, des, ;), a given positive number that indicates the sensitivity of
which means thatl; units of flow need to be routed

; h h o agents of commodityto the latency.
rom the vertexsource € V' to the vertexdest < 4 These utility functions define a game between the
using the edges aff. Let P; denote the collection of

) agents, whose equilibrium is calledNmash flow(also
all paths fromsource to dest in G, andP := U;P;.

thout | ¢ i B known as aNardrop equilibrium in G with respect to
We assume, without loss of generality, tha d; = 1. tolls 7, or a Nash flow inG™. More precisely, the Nash

Vf\]/ith als_light abt:j_se of notalii(t))n, we sometimes denq}gw in G is a multicommodity flowf such that for
the multicommodity network by too. every‘commodity‘ and every two pathg, p’ € P; such
The discrete model.In this model, amulti- thatf; >0, we havew;l,(f) + 7 < ailp’(f.) + 7 (in
commodity flowfor the graphG and commodities Words, all paths that agents of commodityre using
{(source, dest, d;)} is represented by a vector of nonare required to be minimum cost paths with respect to

negative valuegf.) foreveryi = 1,..., K andp € P;. the costfunction of these agents).

Such a flow is feasible if for everyy >_ p, f, = di. The continuous model.The difference between
Intuitively, this means that thah commodity sendg;, the continuous model and the discrete model is that in
units of flow along the patp. the discrete model we assume that all agents of com-

A congestioris defined as a vectdp.).cz € R¥. modityi have the same sensitivity; to latency, while
Every flow f corresponds to a congestion defined &$ the continuous model we allow the sensitivity of
fe =222 pep,ecp p- This is called the congestionhese agents to come from an arbitrary given distribu-
induced byf. We say that a congestigris feasiblefor tion. To model this formally, we represent each in-
the commoditieq (source, dest, d;)} if there is a fea- finitesimal agent of commodity as a real number in
sible multicommodity flow whose induced congestion, d;]. The sensitivity of agents of commaodityto la-
on every edge is less than or equal t@.. tency is given by a functiomy; : [0,d;] — RT. We

Initially, we assume that every edge € E assume that agents are ordered by their sensitivity; in
has a non-decreasing continudagency function. : other wordsy;’s are nondecreasing functions.

0,1] +— R* associated with it. This function spec- A multicommodity flow is a collection(f?) of
ifies how much latency each commodity usiaguill Lebesgue-measurable functiorié : [0,d;] — P
suffer given the congestion ef(i.e., the total amountone for each commodity. The amount of flow of
of flow that passes througt). More precisely, if(f.) commodityi on a pathp € P; is defined as the
is the congestion induced by a flofy then the latency Lebesgue measure ¢t. € [0,d;] : f*(a) = p}, and
observed on a pathis I, (f) := >_.c, le(fe). In Sec- denoted byf:. The congestion induced bfyon an edge
tion 6, we look at more general functions for edge la-is defined asf, := 3, > pepiecn fi. The latency
tency and path latency. experienced on a pahis defined in the same way as

We assume that the flow is composed of infinitesi-
mally small agents that behave selfishly. In the absencecole, bodis, and Roughgarden [3] consider utilities of the ok +
of '[O||S, each agent of théth Commodity wants to get L. Our model is obviously equivalent to theirs by setting = 1/8;.

f to d . th that minimi h We will consider latencies as perceived differently for different users. In
rom source to dest using a pa at minimizes Neg yer for us to compare utilities, it is useful to express them in the common

total latency. The selfish nature of the agents and tl@ency of money.



in the discrete model. Given a tott on each edgesolution to the dual, and and (¢, z) are complemen-

e, a flow f is called a Nash flow inG™ if for every tary, then both are optimal.

commodityi and every agent € [0, d;], the minimum _ _ _ _

of the cost; (a)l,(f)+, over pathg € P is achieved 3 Existence of optimal tolls in the discrete model

atp = f%(a) (in words, each agent uses a min cost path this section, we prove that in the discrete model, it

with respect to her sensitivity to latency, the curreit possible to find tolls that enforce the optimal conges-

congestion, and tolls). tion. The proof is based on complementary slackness
Notice that the discrete model is essentially equigenditions applied to a pair of linear programs defined

alent to the continuous model wheg's are step func- below.

tions with a bounded number of steps. Assumeg is a congestion that we would like to
It is known that a Nash flow always exists and Bnforce. Given this congestion, we define the linear

essentially unique (under mild conditions on the latenpyogramp; as follows:

functions). [3] gives details and further references.

Enforceable congestionsGiven a multicommod-
ity network G, we call a congestiog enforceable if

minimize Y i > L(g)f;  (3.1)

there is a set of nonnegative toltssuch that the con- subject to booren

gestion induced by the Nash flow &™ is g. Cole, .

Dodis, and Roughgarden [3] proved that in the case of Vec E: Z Z fp<9. 32
networks with a single source, the optimal congestion, ¢ pePuecp

i.e., the congestion that minimizes the average latency Vi Z f;; =d; (3.3)
of all agents is enforceable, and asked whether the same pEP;

result holds for multicommodity flows. In this paper, ViVp e P;: f;; >0 (3.4)

we settle this question affirmatively, by giving a char- _ _
acterization of the set of all enforceable congestions. The dualD,, of the above program is the following:
Our results even hold for the general classafgestion

games which is an important and extensively-studied -
class of games defined by Rosenthal [10]. maximize Z dizi = ;ge (35)
e
Linear Programming preliminaries. In this pa- subject to

per we make strong use of linear programming duality. i )

. . . ePp;: i — te < ol 3.6
There are many basic reference texts on this subject, for LIPS : 526; e S aibplg)  (36)
example [2]. We briefly review some of the basics that Vec E - L0 3.7)
we use here. A linear program defined by data matrices ' c= '
P andC' and data vectors, p, ¢ with variable vectot: Let f and (4, 2) be optimal solutions to these re-
of the formmin ax; Pz < p; Cx = ¢;z > 0 has alin- - spective programs. Complementary slackness implies

ear program duabf the formmaxc'z — pTt;CTz —  that |ffz > 0thenz; = Zeept +a;l,(g). This means

PTt < a;t > 0. (Linear programs may have many difthat 3, represents the cost of all paths used by commod-

ferent forms. This is just for example.) Solutionand ity 4, so thatf is a Nash flow.

z,t are said to beomplementaryf z; > 0 implies that We define the concept afinimalityof a congestion

C;z — Pjt = a; (conversely(C;z — Pjt < a; implies as follows:

xzj = 0); t; > 0 implies thatPz = p;; andz; > 0

implies thatC;z = ;. DEeFINITION 1. A feasible congestiop is minimal if
and onIy if the linear programp, has an optlmal

fea5|ble solutlons then they both have optimal sold-ignt,

tions, and every pair of optimal solutions of the primal
and the dual are complementary. Conversely; i§ a We now prove the following theorem, that charac-
feasible solution to the primal an@, z) is a feasible terizes the set of all enforceable congestions.



THEOREM 3.1. A feasible congestion is enforceable Proof. We call a congestion minimally feasibléf it is
if and only if it is minimal. feasible, and for every congestighsuch thayy, < g¢.

for everye € E andg., < g. for at least one edge
Proof. First, we prove the “if” part. By minimality of ./ js not feasible. Take an optimal congestign
g and LP duality, there is an optimal solutighfor e can turn this congestion into a minimally feasible
P, such that for evernye € E, the inequality (3.2) congestion as follows: Leg® := g. Consider the
is tight (in other words, the congestion induced té’dges of the graph in an arbitrary ordgre,, . .., and
fis g), and a corresponding complementary optimg; each edger;, let ¢ be the congestion that is

solution (t, z) for Dy Now, we prove, using thethe same ag(i—!) everywhere except possibly an,
complementarity slackness conditions, that the flow

) e o ¥and gg) is the minimum amount for whictPg@ has
is a Nash flow in-". Fix a commodity;, and consider , tgaqihle solution. Lej* be the final congestion. By
a pathp € P; with nonzero flow (i.e.,f! > 0). B

. ] - BY this definition,g* is minimally feasible. In other words,
the primal complementarity slackness condition, fagery feasible and therefore every optimal solution of
every suchp we haveail,(g) + > ccpte = zi. ThiS p makes inequalities (3.2) tight for every edge
means that the utility of the agents of commodzity-rhus,g* is minimal. Hence, by Theorem 3.3 is
usingp is the same value; for all p € P;. Also, for gnforceable. On the other hand, since latency functions
any other pattp € P;, by inequality (3.6) we haveare nondecreasingy’, le(g*)g" < 3=, le(g)ge, and

@ilp(g) + > cepte > 2. Therefore, agents do nohenceg* is also optimal. 0
have an incentive to switch their paths. Thufsis a

Nash flow inG?, and the congestion induced Ifyis g.

Theéefore,g |s|enforceabIeH . ; define the optimal flow as a flow that minimizes an
bl O_Pr\]/.erse Y, as;t:r?(taht at a congei?gyoa en g,rtcef'l arbitrary nondecreasing function of congestion on the
aple. 1his means that there Is a muticommodity O(‘évdges. This is formulated in the following corollary,

f and tOIIST_ suph thatf is a I'\lash' flow ',nGT' and whose proof is essentially the same as the proof of
the congestion induced by it i& Since f is a Nash Corollary 3.1

flow, for everyi, all the agents of typeé should have
the same utility. This means that for every P; such
that f; > 0, the valuewl,(g) + 7(p) is the same. Let
us call this valuey;. Since no agent has an incentive
change her path, for every pathe P; we must have
a;ly(g) + 7(p) > 2. Thus, if we considef and(r, z)
as the SOIu“O.nS of thg progranty andD:q, then they The above corollary can be useful in certain ap-
are both feasible solutions, and they satisfy the complef.- . F e b forci flofy that
mentarity slackness conditions. Thuyfsjs an optimal Plications. - For example, by enforcing a flojvtha

solution for P, and we also know that for every in- tmhm'mlzelfmaﬁ" mﬁrﬁ”@i b(f), we can en:;l_JrIe that lﬂ
equality (3.2) is tight. Hence, is minimal. e resulting Nash flow an emergency vehicle (in other

words, an agent who only cares about the delay) can

We now show that the above theorem answers gt from evensource to the correspondindest in the
firmatively the question asked by Cole, Dodis, arkiortest possible time in the worst case.
Roughgarden [3] regarding the enforceability of opti- An alternative (and arguably better in certain ap-
mal congestion. We call a congestigroptimal if ¢ plications) way to define an optimal flow is to con-
minimizesY_, I.(g)g. over the set of all feasible conSider the weighted average pf the latencies §uﬁered
gestions. Notice thgt, I.(g)g. is equal to the averagePy the agents, where the weight of an agent is equal

latency that the agents suffer in the network. to her sensitivity to latency. More precisely, we say
that a flow f is weighted optimalif it minimizes

COROLLARY 3.1. For every multicommodity networkd ; c; > p, I,(f) [} over the set of all feasible flows.
in the discrete setting, there are tolls that enforce arhe next corollary shows that minimal weighted flows
optimal congestio*. are also enforceable. Notice that this statement says

Notice that the above proof works even if we

COROLLARY 3.2. Letw : R¥(®) s R be an arbitrary
function that is nondecreasing in each of its arguments.
t‘Phen there are tolls, that enforce a congestiofithat
minimizesw( f) over the set of all feasible congestions.



that not only the congestion induced by the flow, but Polynomial time computation of tolls. The linear
also the flow itself is enforceable. programsP; andD,, give a polynomial-time algorithm

to compute tolls that induce an optimal congestion (or
COROLLARY 3.3. For every multicommodity networkn general, any enforceable congestion) in polynomial
in the discrete setting, there are tolls that enforce tine. Although these linear programs have exponential
weighted optimal flowy™. size, they can be written as polynomial-size programs

_ _ in the standard way: FaP,, we use variableg; for
Proof. Among all welghted optimal flows, take a ﬂo"_‘évery commodity and edge instead off;',’s, and write
f*suchthaty’, f¢ is the smallest. By Theorem 3.1 iy conservation constraint for every vertex and every

is enough to show that this flow is minimal. Assume gommodity and the capacity constraint on every edge.

is not. Therefore there is an optimal solutifrior Py« 14king the dual of this program gives us a polynomial-
for which inequality (3.2) is not tight for some edgeg;i;¢ program equivalent t®,, where tollsr, come

We have from the dual variables corresponding to the capacity
; ; constraint inP,.
i l L i *) fr L9 . .
zz:ap%; Py z;ap%; W) f After writing P, and D, as polynomial-size pro-

i grams, we can solve them using an LP solver to com-
< D @iy L), (38) pute optimal tolls and a corresponding Nash flow. Fur-
i pEP thermore, by solving), once and computing the value

where the first inequality follows from inequality (3.2{f the objective function, we can add an inequality to
and the fact that latency functions are nondecreasiHyS Program so that the resulting set of inequalities give
and the second inequality is a consequence of the oBtF_omplete characterlzatlon of the polytope of tolls that
mality of f for the linear progran®;.. Equation (3.8) enforceg. This can be us_ed to compute tolls that en-
shows thatf is also a weighted optimal flow. Alsoforce g and are optimal with respect to another objec-

we know thatf, < f* for every edge: and f, < f tive, for example, minimizing sum of tolls, or minimiz-

for some edges. This contradicts with the assumptitiy maximum toll. _
that f* is the weighted optimal flow with the minimum Cole, D_Od_'s’ and Roughgarden [3] gave a.dlﬁerent,
value of ", f*.  although similar, linear program for computing tolls

(In [3] this program is stated in the case of single-

The argument in the proof of Corollary 3.1 can bgommodity networks, but it is easy to see that the
used to show thatveryfeasible congestion is enforcesame program works for multicommodity networks

able in the following weaker sense: We say that a $8@)- However, this program requires the knowledge of
of tolls = Weak|y enforces Congestiom, if there is a the flow pattern of different commodities in the Nash

congestiony’ < ¢ that is enforced by-. flow to be induced. This is a strong assumption, as
there are many ways that a flow can be decomposed into
COROLLARY 3.4. Every feasible congestiory is paths, but perhaps only one of these decompositions
weakly enforceable. corresponds to the set of paths used by users when the
right set of tolls are imposed. Fleischer [6] gives an
Proof. As in the proof of the previous corollary, wesxample to demonstrate that the Nash flow pattern may
start from the congestiop and consider the edges oflepend onv. Furthermore, as stated in [3], their linear

the graph in an arbitrary order. For each edge in thieogram does not prove the existence of optimal tolls.
order, we decrease the amount of congestion on that
edge to the minimum amount for which the congesti@gn An exponential bound on the tolls

is still feasible. Lety” denote the resulting congestionthe following theorem gives a bound on the maximum
Clearly, ¢' is minimally feasible, and therefore byaiue of tolls needed to enforce a given congestion.
Theorem 3.1 it is enforceable. Singé < g, the This bound is exponential in the number of edges of
corollary follows. U the graph, but it is important that it is independent of

the number of commodities or types of agents. We will



use this result in the next section in the proof of tHeemmA 5.1. Assume that for every the functionq;
existence of tolls in the continuous model. As we wiit a step function with a bounded number of steps. Then
see in Section 5, this bound also holds for more genett&re are tolls{ 7.} that enforce an optimal congestion

congestion games. in this network.
We denote the maximum of;'s by a;yax. AlSO, let
Imax denotemax.c () le(1). Proof. Letr; denote the number of steps in the function

a;. Replace each commoditywith »; commodities,
THEOREM4.1. Let G' be a multicommodity networkeach corresponding to one of the stepsvaf Each of
and g be an enforceable congestion 0. Theng is these commodities has a constant value of sensitivity
enforceable with toll$ satisfyingt. < T forall e € E, to latency which is equal to the value of in the
whereT is a number that depends only on the numbesrresponding step. Also, the demand for each of these
of edges in the graph,.x, and amax, and not on the commodities is equal to the length of the corresponding
number of commodities. step ina;. Itis easy to see that the network constructed

in this way is equivalent to the original network, in the
Proof. Consider a basic feasible soluti¢h z) of the sense that for any set of tolls, a Nash flow in the original
dual programD,. This program hag# + m variables, network corresponds to a Nash flow in the constructed
where K is the number of commodities and is the network. Thus, we can use Corollary 3.1 to find a set
number of edges ofy. Therefore, there should beof tolls for this network, and therefore for the original
a set of K + m inequalities that are tight iri¢, z), network, that enforce an optimal congestion. O
giving us K + m equations with a unique solution of
(t,z). Eachz; should be present in at least one of The following lemma shows that no matter what
these tight inequalities, for otherwise the solution will:'s are, we can represent a Nash flow concisely.

not be unique. Therefore, we can use this equation

to eliminatez; from the set of our equations. Aftel-EMMA 5.2. For every network and every set of tolls
eliminating all ;, we getm equations, each of thel the continuous model, there is a Nash flgvsuch

form t, = 0 or of the form . . + auly(g) = that for every commodityar_ld every patlp € P;, the
S b+ sl ok ’ ionset{a € [0,d;] : f'(a) = p} is a connected set.

ccp te ily(g). We can write these equation
as a matrix equatiomt = b, where A is a matrix
of +1's and —1's, andb is a vector whose entries ard’roof Sketch. We show that for every two agents
of the form i, (g) — a;ly(g), and therefore are alla,b € [0,d;], if a < b, then the latency of the path
at mostamaxmlmax. The collection of allm x m f(a) is greater than or equal to the latency of the path
matrices with+1 entries is finite. LetS denote the f‘(b). This is true, since otherwigehas an incentive to
maximum possible entry in the inverse of a matrix froswitch to the pathf?(a). Using this fact and Lebesgue-
this collection. ClearlyS is finite and only depends onmeasurability off?, we can changg’ to get a flow that
m. Also, we havet = A~'b, and therefore for everyis still a Nash flow and also satisfies the condition of the
e, te < m?Samaxlmax. This completes the proof of thdemma. O
theorem. O

THEOREMS5.1. For every multicommodity network in
5 Existence of optimal tolls in the continuous the continuous model, there is a set of tolls that enforce
model an optimal congestion.
In this section we use the results of Sections 3 and 4 to
show that in the continuous setting optimal tolls exigbyoof Sketch.For each commodity, we estimate the
The idea of the proof is to estimate continuey$ by  functiona; by a sequence?, a2, ... of step functions.
a sequence of step functions. For each step functionmine a networlG* by replacing the function; by its
can find the optimal tolls using Corollary 3.1. This ig'p estimaten” for every commodity. By Lemma 5.1
stated in the following lemma. for eachk there is set of tolls* that enforce an optimal
congestion inG*. Let f(*) denote the Nash flow in the



network G* with respect to tollst*. We can assumeresource). Each resourceis characterized by its
that f(*)’s satisfy the condition of Lemma 5.2, andatency function/; : Ry — R,, which is a non-
therefore each of these flows can be representeddegreasing function of the total usage jof A usage
giving the end points of the intervals on which theectoris a vector in]Rf specifying the usage for every
flow is constant. This means that ea¢l’) can be resource. A usage vectoris feasibleif there exist a
given by a sequence of at mog®| real numbers in way to satisfy every user without using any resource
[0,1]. Also, by Theorem 4.1 in the previous sectior), more thanv;. A usage vector isninimally feasible
we can assume that all tolls irf are bounded by aif decreasing any component by any positive amount
constantT, independent of.. Therefore,(7*, f(*)) makes it infeasible.
belongs to a compact set. This means that there is Our objective is to set tolls on the resources in order
a subsequencky, k», . .., such that(*, f(*)) on this to induce a given usage vector. lzetdenote the toll on
subsequence tends to sofmef). Itis not hard to show resourcej. Users of the'th kind seek to pick a sef €
that7 enforces the flowf in the original network. 0 S; that minimizesy; 3 ;¢ 1;(vj) + > ;cs 75, Wherev

is the current usage vector. The Nash equilibrium of
6 General Congestion Games this game is defined in the same way as in Section 2.
In the proof of Theorem 3.1 we did not use much of triNeIT S8y thﬁttﬁ l:)S.agtE vectors enfcircgazlelf t(;lgre aILe h
structure of the network. In this section we show thac{ s 7 suchthab s the usage vector induced by a lNas
similar results are true for a general class of congest%%umb”um In the game resuilting from the toits
games. First, we discuss a simple setting, which is @3+EoREM6.1. Suppose € R is a minimally feasi-
sentially the setting of general congestion games (orige usage vector. Then there exist nonnegative tolls that
inally defined by Rosenthal [10]) with infinitesimallyenforceu.

small agents. ]
Consider a game which has different kinds of Proof. Let Zis be the volume of users of theth kind

users andM different resources. We want to tolf"at have chosen the s6t Letl;s denote the quantity

resources so that we can enforce a certain usageol-jcs Li(vj). Consider the following linear program
;5 as variables.

resources. Users have certain usage requirements"&mx
they are sensitive to both latencies and tolls. There is
an infinite number of users of each kind, each having  minimize Z Z lisTis (6.9)
an infinitesimally small effect on the game. Theh i SeS;
kind is described by the following parameters:

subjectto Vi : Z Tis > d;

o total volume of the usersg;. Ses;

e a latency sensitivity constanty;. This constant \E Z Z Tis < Uj
specifies the monetary value of one unit of latency i SeS;| jes
for a user of typs. Vi,S €S8;: x;9 >0

e a collectionS; of subsets of the resources. Each The first set of constraints tells us that the all the
set inS; is a combination of resources that cafémands are met. The second set of constraints makes
satisfy a user of type. If a user picks a setSure that we do not exceed the usage givenvby
containingj, then we say that she is using thMinimality of v implies that these constraints are tight
resourcej. For example, in the multicommodityin @any feasible solution. This means that every feasible
network game described in earlier sections the §8lution of the above program represents a situation in

of resources is the set of edges of the graph, dhg§ 9ame where is the usage vector and hengg is
S; is the set of all paths frorsource to dest. the total monetary value of the latency of resources in

S for a user of type.
Usageof a resource is the total volume of users The dual of the above program will give us the tolls
using that resource (i.e., picking sets containing tteeenforcev. The dual can be written as follows, with



7; andz; as the dual variables corresponding to jte 1. Different types of users may experience differ-

resource and thah type of users, respectively. ent latencies for a resource with the same congestion.
In natural settings, users may intend to use a resource
differently. For example, on the Internet, UDP traffic

maximize Z dizi — Z”ﬂj (6.10) and TCP traffic might be affected differently by con-
! J gestion, or in a road, a motorbike and a big truck ex-

subjectto  Vi,S €S : 2 < lis + ZT' perience different latencies in the same traffic. So we
) 7. 21 X U bl

can assume that latency is a function which may assign
different latencies to different kinds of users. Formally

, l; : Ry — RY. Theorem 6.1 and Corollary 6.1 hold
Vi Tz 0 for this generalization. In fact, now we can pall into

We interpret the dual variable; as the toll on lji» Wherel;; is the latency function of for i. So we
resourcej. The right-hand side of the first set oflo not needy;’s; instead, latency functions themselves
constraints is the total cost for users of tygte choose converts the latencies into monetary values.

S. Sincez; appears with positive coefficient in the dual  2- Latency functions may be nonseparable func-
objective function, at least one constraint formust tions of the usage of resources. For example, in wire-
be tight. This implies that; is actually the cheapest€Ss networks, because of interference, latency on alink
cost for satisfying a user of type By complementary is not only a function of the traffic on the link but also
slackness condition, for any optimal primal solutioft function of the traffic on the neighboring links. In

« and optimal dual solutiorfg, 7), wheneverz;g is road networks, congestion on a road depends on traffic
positive the corresponding constraint in the dual mut adjacent roads. Our model permits latencies to be a
be tight. This means that whenever users of kirade general function of the usage of all the resources. For-
choosings to satisfy themselves their cost of doing s&ally, /; : R} — R%Y. Theorem 6.1 and Corollary 6.1

is z;, which as argued is the cheapest cost. Since eRe¥f for this generalization.

user is infinitesimally small, changing the strategy for 3. We assumed that the latency of a Seis the

any user does not change the latencies. Hence choo§i# Of latencies of the resources in it. This assumption
the cheapest is a best response strategy for evef§ @lso not necessary. Our results hold even if we
infinitesimally small user. This implies thatis a Nash allow each type of user to have an arbitrary function

equilibrium for the tollsr;, inducing the usage vectoi : Si x R} — R, that for every sef € S; and every
v. ] usage vector € RY, gives the monetary value of the

latency experienced by if she picksS and the current

In fact, it is not difficult to argue that whenever weisage vector is. Furthermore, we could allow;’s to
have a Nash equilibrium satisfying the primal LP (6.9 collections ofractional sets of resources.
the tolls will satisfy the dual LP (6.11) and they will  Bounds on Generalized Congestion Games he
form a primal-dual optimal pair. exponential bound on tolls given in Theorem 4.1 also

The definition ofweakly enforcingand the proof holds for generalized congestion games. The proof gen-
of the following corollary is similar to the ones ireralizes easily to this setting. Therefore, tolls exist to
Section 3. enforce usage patterns of generalized congestion games
also in the continuous setting analogous to the continu-
ous model for network games described in Section 5.

Furthermore, as the following example shows, the

It can be easily observed that the proof of TheBpund in Theorem 4.1 cannot be improved significantly

rem 6.1 did not use many of the assumptions of tfegeneral congestion games.

model. In the following, we describe three increasingly

more general models in which our results still hol&ExaMPLE 1. Consider an abstract congestion game
As mentioned below, these generalizations are usefahsisting ofc types of agents, arlk + 1) resources
in certain practical applications. calleday,...,ax, bo, ..., br. All agents have the same

jes

COROLLARY 6.1. Supposev € R% is a feasible
usage vector. Thencan be weakly enforced via tolls.



sensitivity to latency. Agents of th&h type have [14] J. G. Wardrop. Some theoretical aspects of road traffic
strategy setS; = {{ai_1,bi—1},{a;},{bi}}. The research. IrProc. Institute of Civil Engineers, Pt.,lI
latency of the resources, and by is always one, volume 1, pages 325-378. 1952.

while the latency of all other resources is always zero.

The congestiory that we would like to enforce is the

following: the congestion afy, by, ax, andb;, are 1/3,

and the congestion of all other resources is 2/3. Itis

easy to see that in order to enforce this congestion, we

must have,, = 7, = 7,,_,+7,_, foreveryi > 1, and

Ta, = Tb, = 2. Therefore, we need tolls exponential in

the number of commodities in order to enforci this

game.
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