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Abstract
We investigate the influence of different algorithmic choices
on the approximation ratio in selfish scheduling. Our goal
is to design local policies that minimize the inefficiency
of resulting equilibria. In particular, we design optimal
coordination mechanisms for unrelated machine scheduling,
and improve the known approximation ratio from Θ(m) to
Θ(log m), where m is the number of machines.

A local policy for each machine orders the set of jobs
assigned to it only based on parameters of those jobs. A
strongly local policy only uses the processing time of jobs on
the the same machine. We prove that the approximation ra-
tio of any set of strongly local ordering policies in equilibria
is at least Ω(m). In particular, it implies that the approxi-
mation ratio of a greedy shortest-first algorithm for machine
scheduling is at least Ω(m). This closes the gap between the
known lower and upper bounds for this problem, and an-
swers an open question raised by Ibarra and Kim [16], and
Davis and Jaffe [10]. We then design a local ordering policy
with the approximation ratio of Θ(log m) in equilibria, and
prove that this policy is optimal among all local ordering
policies. This policy orders the jobs in the non-decreasing
order of their inefficiency, i.e, the ratio between the pro-
cessing time on that machine over the minimum processing
time. Finally, we show that best responses of players for the
inefficiency-based policy may not converge to a pure Nash
equilibrium, and present a Θ(log2 m) policy for which we
can prove fast convergence of best responses to pure Nash
equilibria.

1 Introduction

In order to study the influence of algorithmic choices
in the presence of selfish users, we need to study the
inefficiency of equilibrium points. The approximation
ratio of a decentralized algorithm in lack of coordina-
tion can be captured by the the worst case performance
of a Nash equilibrium over a global social optimum, i.e.,
the price of anarchy [19]. A natural question is to design
decentralized algorithms to reduce the price of anarchy
for selfish users. In these algorithms, a central author-
ity can only design protocols and define rewarding rules
and hope that the independent and selfish choices of the
users -given the rules of the protocols- result in a socially
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desired outcome. To this end, different approaches have
been proposed such as imposing economic incentives in
the form of monetary payments [5, 8, 13], and using the
Stackelberg strategy [4, 18, 22, 25] which is enforcing
strategies upon a fraction of users. The main disadvan-
tage of these two strategies is that they assume global
knowledge of the system and thus have high communi-
cation complexity. In many settings, it is important to
be able to compute mechanisms locally. A different ap-
proach, which is the focus of our paper, is called coordi-
nation mechanisms, first introduced by Christodoulou,
Koutsoupias and Nanavati [7]. A coordination mecha-
nism is a local policy that assigns a cost to each strat-
egy s, where the cost of s is a function of the users who
have chosen s.

Consider, for example, the selfish scheduling game
in which there are n jobs owned by independent users, m
machines and a processing time pij for job i on machine
j. We concentrate on pure strategies case where each
user selects one machine to assign his job. Each user
is aware of the decisions made by other users and
behaves selfishly. Specifically, it wishes to minimize its
completion time by assigning its job to the machine at
which its job would complete first. The global objective
however, is to minimize the make span - maximum
completion time. A coordination mechanism [7] for this
game is a set of local policies, one for each machine,
that determines how to schedule jobs assigned to that
machine. A machine’s policy is a function only of the
jobs assigned to that machine. This allows the policy
to be implemented in a completely distributed and local
fashion.

We mainly study ordering policies. Ordering poli-
cies characterize all deterministic non-preemptive poli-
cies that satisfy the independence of irrelevant alterna-
tives or IIA property1. We consider strongly local poli-
cies in which the ordering of jobs on machine j only
depends on the processing time of the set Sj of jobs on
machine j, and local policies in which the ordering for
machine j depends on all parameters of jobs in Sj . Two

1For the definition of non-preemptive policies and the IIA
property, see Section 2.
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examples of the strongly local ordering policies are the
ShortestFirst and LongestFirst policies in which we order
the jobs in non-decreasing and non-increasing order of
their processing times, respectively.

Several local policies have been studied for machine
scheduling problems, both in the context of greedy
or local search algorithms for machine scheduling [16,
12, 23, 10, 1, 3, 6, 26], and also in the context of
coordination mechanisms [19, 9, 7, 17]. Ibarra and
Kim [16] present a greedy shortest-first algorithm and
proved an upper bound of m for its approximation
factor. It has been shown that the output of this greedy
algorithm is equivalent to the pure Nash equilibria
of the ShortestFirst policy in selfish scheduling [17].
An Ω(log m) lower bound has been proved for the
approximation factor of this algorithm [10].

Our Results. In Section 3, we show that any
set of strongly local ordering policies results in the
price of anarchy of Ω(m). This result implies that the
ShortestFirst policy has the price of anarchy of Θ(m).
Moreover, this bound closes the gap between the known
lower and upper bounds of the approximation ratio of
the shortest-first greedy algorithm (i.e., Algorithm D
by Ibarra and Kim [16]) and answers an open question
originally raised in 1977 [16, 10, 17].

In Section 4, we design a local ordering policy for
which the price of anarchy is Θ(log m). Specifically,
on each machine, we order the jobs by in the non-
decreasing order of their inefficiency, i.e., the ratio of
the job’s processing time on this machine to its fastest
processing time. Also we show that any deterministic
non-preemptive set of local policies satisfying the IIA
property results in the price of anarchy of Ω(log m). In
particular, it shows that the inefficiency-based policy
is almost optimal among local ordering policies. In
Section 6, we study existence of pure Nash equilibria
for ordering policies and prove convergence to pure
Nash equilibria for some special cases. The main
result of this section is that pure Nash equilibria may
not exist for the inefficiency-based policy and the best
responses of players may not converge to it. Finally, in
Section 7, we design a local policy for which the best-
response dynamics of players converges to a pure Nash
equilibrium in polynomial time and the price of anarchy
is Θ(log2 m).

Related work. Coordination mechanisms are re-
lated to local search algorithms. Starting from a so-
lution, a local search algorithm iteratively moves to a
neighbor solution which improves the global objective.
This is based on a neighborhood relation that is de-
fined on the set of solutions. The local improvement
moves in the local search algorithm correspond to the
best-response moves of users in the game defined by the

coordination mechanism. The speed of convergence and
the approximation factor of local search algorithms for
scheduling problems have been studied in several pa-
pers [10, 11, 12, 16, 23, 24, 26, 1, 3]. Vredeveld sur-
veyed some of the results on local search algorithms
for scheduling problems in his thesis [26]. Here, we
note that the invariant that we use in the proof of the
O(log m) upper bound for the unrelated machines seems
similar to the invariant proved in [3] for the online al-
gorithm for the restricted assignment model. However,
for the unrelated machine we cannot use volume preser-
vation as in the restricted assignment model (i.e., the
total size jobs on machines depends on the assignment).
Moreover, in the restricted assignment model the effi-
ciency of all jobs are 1 where in the unrelated machines
model they vary. Interestingly, the proof of the online
algorithm for unrelated machines [1] is based on a dif-
ferent technique (and not on this type of invariant).

Ibarra and Kim [16] analyzed several greedy algo-
rithms for unrelated machine scheduling. In particular,
they proved that the shortest-first greedy algorithm is
an m-approximation for the maximum completion time.
Davis and Jaffe [10] showed that the approximation fac-
tor of this greedy algorithm is at least log m. The best
known approximation factor is given by a central 2-
approximation algorithm due to Lenstra, Shmoys and
Tardos [20].

A widely studied scheduling policy is the Makespan
policy in which we process all jobs on the same machine
in parallel so that the completion time of a job on
machine j is the makespan of machine j. The price
of anarchy of this policy is unbounded even for two
machines. Tight price of anarchy results for (mixed)
Nash equilibria are known for this policy for special
cases of the unrelated scheduling problem [9, 2, 14, 19].

Coordination mechanism design was introduced by
Christodoulou, Koutsoupias and Nanavati [7]. In their
paper, they analyzed the LongestFirst policy for P ||Cmax

and also studied a selfish routing game. Immorlica, Li,
Mirrokni, and Schulz [17] study four coordination mech-
anisms for four types of machine scheduling problems
and survey the results for these problems. They further
study the speed of convergence to equilibria and exis-
tence of pure Nash equilibria for the ShortestFirst and
LongestFirst policies.

2 Preliminaries

The unrelated machine scheduling problem or R||Cmax

is defined as follows: there are m machines and n users,
where user i (i = 1, . . . , n) has a job that can be assigned
to any machine. Job i for i = 1, . . . , n is associated with
an m-vector �pi, where pij indicates the processing time
of job i if assigned to machine j.
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Given an instance of the R||Cmax problem, we
define the global optimum (denote it by OPT ) to be
the assignment of jobs to machines that minimizes the
makespan, i.e., the maximum completion time. We
slightly abuse the notation and use OPT to denote also
the value of the optimal solution. The goal is to find a
schedule which minimizes the total makespan.

In selfish scheduling, each job is owned by an inde-
pendent user whose goal is to minimize the completion
time of his job. In order to make the selfish users to take
globally near-optimal actions, we can define the follow-
ing notion of coordination mechanism [7]. A coordina-
tion mechanism is a set of local scheduling policies, one
for each machine. A scheduling policy Pj for a machine
j maps any set S of jobs on machine j to a schedule of
all jobs in S. The policy is run locally at a machine,
and so does not have access to information regarding
the global state of the system, for example the set of
jobs scheduled on other machines. As a result, for any
policy Pj and a set of jobs S for machine j, each job
i ∈ S is mapped to a completion time Pj(S, i).

A scheduling policy Pj is strongly local if it only
looks at the processing time of jobs in Sj on machine j
and assign each job i ∈ Sj a completion time. A strongly
local policy Pj may have an arbitrary tie-breaking rule
for jobs of the same processing time. In order to
formally define the tie-breaking rules, we assume that
each job has a unique ID and a local policy’s tie breaking
rule is a function of the set of IDs of jobs. A local policy
looks at all parameters of jobs assigned to machine j
and assigns each job i ∈ Sj a completion time . Note
that a local policy that is not strongly local may use the
processing times of the jobs of Sj on other machines, but
it does not have any information about other jobs that
are not assigned to this machine.

A policy is a non-preemptive policy if it processes
each job in an un-interrupted fashion without any delay.
A policy is a preemptive policy if it can interrupt jobs
during the scheduling and can put some delay on the
machine. We say that a policy satisfies the independence
of irrelevant alternatives or IIA property if for any set
S of jobs and any two jobs i, i′ ∈ S, if i has a smaller
completion time than i′ in S, then i should have a
smaller completion time than i′ in any set S ∪ {k}. In
other words, whether i or i′ is preferred should not be
changed by the availability of a job k. The IIA property
appears as an axiom in voting theory, bargaining theory,
and logic [27].

A scheduling policy is an ordering policy if for each
instance of the scheduling problem, it orders the jobs
non-preemptively based on a global ordering. It is not
hard to show that any deterministic non-preemptive
policy that satisfies the IIA property is an ordering

policy. The ShortestFirst and LongestFirst policies are
ordering policies in which we order the jobs in non-
decreasing and non-increasing order of their processing
times, respectively. Note that the ShortestFirst and
LongestFirst may have arbitrary tie-breaking rules based
on the IDs of jobs.

A special class of the R||Cmax problem is the ma-
chine scheduling for restricted assignment (B||Cmax) in
which each job i can be scheduled on a subset Ti of ma-
chines, i.e., pij is equal to pi if j ∈ Ti and is equal to ∞
otherwise.

3 A Lower Bound for Strongly Local Policies

In this section, we show that the approximation ratio of
any set of strongly local ordering policies is Ω(m). In
the next section, we present a local ordering policy that
achieves the factor O(log m) and will prove a matching
lower bound for local policies.

Theorem 3.1. The price of anarchy for any set of de-
terministic non-preemptive strongly local policies satis-
fying the IIA property is at least Ω(m).

Proof. We observe that any deterministic non-
preemptive policy satisfying the IIA property is an
ordering policy. As a result, we show that for any
strongly local ordering policy, the price of anarchy is
at least Ω(m). Let nj = 2(m−1)!

(j−1)! for 1 ≤ j ≤ m and
n =

∑m
j=1 nj . Consider the set of m machines and a set

P1, . . . ,Pm of strongly local ordering policies on these
m machines. Given this set of policies, we construct
an instance of n jobs for which the price of anarchy is
Ω(m). Since the policy Pj is a strongly local ordering
policy, it only looks at the processing time of jobs on
machine j and their IDs. As a result, if the processing
time of all jobs on machine j is equal to (j−1)!

(m−1)! , Pj

orders the jobs based on a global ordering of IDs. Let
σj be this ordering on the IDs of jobs. We construct
an instance in which all jobs that can be scheduled
on machine j has the same processing time (j−1)!

(m−1)! .
We define a family of subsets S1, . . . , Sm such that
|Sj | = nj for 1 ≤ j ≤ m. Jobs in Sj can be scheduled
only on machines j and j + 1 for 1 ≤ j ≤ m (jobs in
Sm can only go to machine m). The processing time of
all jobs on machine j is (j−1)!

(m−1)! = 2
nj

.
In order to define Sj ’s, we use the following nota-

tion. Given any ordering σ on the IDs of n jobs, a set
T ⊂ {1, . . . , n} of IDs of jobs, and a number k, let σk(T )
be the set of first k IDs in ordering σ that are in set T .
In particular, σk({1, 2, . . . , n}) is the set of first k IDs in
an ordering σ. Also, for 1 ≤ j ≤ m, let wj =

∑j
t=1 nt.

Now, we are ready to define Sjs as a function of all job
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orderings σl by all machines 1 ≤ l ≤ m as follows: Let

Mm+1 := {1, 2, . . . , n}.

Then, for each j (m ≥ j ≥ 1), we have

Mj := σ
wj−1
j (Mj+1), and Sj := Mj+1\Mj.

We claim that the price of anarchy of this instance is
m
2 . An optimal solution of this instance schedules jobs
of set Sj on machine j for 1 ≤ j ≤ m. The makespan
of this schedule is 2

nj
nj = 2. We prove the following

Lemma on this instance.

Lemma 3.1. In any pure Nash equilibrium of this in-
stance, the makespan of machine j is equal to j for any
j from 1 to m. In particular, half of the jobs of Sj are
scheduled on machine j and half of them are scheduled
on machine j + 1 for any j from 1 to m − 1.

Proof. By the construction of Sj (1 ≤ j ≤ m), policy Pj

puts all jobs of Sj after all jobs of Sj−1 on machine j,
since all jobs of Mj go before all jobs of Sj on machine
j and Sj−1 ⊆ Mj . We prove the lemma by induction
on j. For the base of the induction, define S0 as an
empty set and machine 0 as a dummy machine. For
the induction hypothesis, assume that for k ≤ j − 1, in
any pure Nash equilibrium, half of the jobs of Sk are
scheduled on machine k and half of them are scheduled
on machine k + 1. As a result, the load of machine k
for k ≤ j − 1 is exactly k, and the load of machine j
from jobs in Sj−1 is nj−1

2
2
nj

= j − 1. We prove that
in any pure Nash equilibrium, half of jobs of Sj go to
machine j and half of them go to machine j + 1. We
prove the induction step by contradiction. If in a pure
Nash equilibrium, less than half of the jobs in Sj are at
machine j+1, then the completion time of the last job q
of Sj on machine j is strictly more than j−1+ nj

2
2
nj

= j,
since all jobs of Sj−1 will be scheduled before all jobs of
Sj on machine j. Since only jobs in Sj and Sj+1 can be
scheduled on machine j+1 and q ∈ Sj will be scheduled
before any job Sj+1, if q moves to machine j + 1, its
completion time is at most nj

2
2

nj+1
= j. Therefore, q

has incentive to switch to machine j + 1. In addition, if
in a pure Nash equilibrium, more than half of the jobs in
Sj are scheduled on machine j +1, then the completion
time of the last job is more than j on machine j + 1
and this job can move to machine j and improve its
completion time. This proves the induction step.

The above lemma proves that in any pure Nash equilib-
rium the makespan of machine m is m, and therefore,
the price of anarchy for this instance is at least m

2 . This
completes the proof of the theorem.

Since the ShortestFirst policy is a strongly local pol-
icy, the above theorem implies that the price of anar-
chy of the ShortestFirst policy is at least m

2 . Immorlica
et.al. [17] observed that the set of pure Nash equilib-
ria of the ShortestFirst policy is equivalent to the out-
put of the shortest-first greedy algorithm of Ibarra and
Kim [16]. Therefore, the above lower bound implies
the lower bound of m

2 for the shortest-first greedy algo-
rithm, and answers an open question raised by Ibarra
and Kim [16], and Davis and Jaffe [10]. As a result, we
have the following theorem:

Theorem 3.2. The price of anarchy of the
ShortestFirst policy is at least m

2 . In particular, it
implies that the approximation factor of m proved
by Ibarra and Kim [16] for the shortest-first greedy
algorithm is almost tight.

It is worth mentioning that the proof of Theorem 3.1
uses jobs of the same size and argue about tie breaking
rules. For the ShortestFirst policy, we can actually
perturb the example such that all jobs have different
sizes, and hence the shortest-first algorithm is uniquely
define. A proof of Theorem 3.2 without jobs of the same
size is given in the appendix.

4 A Logarithmic Upper Bound

In this section, we give a deterministic non-preemptive
local policy with the IIA property for which the price
of anarchy is Θ(log m). Recall that in the unrelated
links model, a job i is associated with an m-vector
�pi = (pi1, . . . , pim) specifying its processing time on each
machine. Denote by pi = minj pij which is the fastest
processing time of that job on any of the machines. The
inefficiency of job i on machine j is eij = pij/pi. By
definition eij ≥ 1 for all i and j. The min-weight of a set
S of jobs is equal to

∑
i∈S pi. Also, let W =

∑
1≤i≤n pi.

The inefficiency-based policy for machine j orders
the jobs assigned to it in the non-decreasing order of
their inefficiency eij .

Theorem 4.1. The price of anarchy for R||Cmax for
the inefficiency-based policy is at most 2 log m + 4.

Proof. Given this ordering strategy for each machine
and a pure Nash equilibrium, we partition the assign-
ment into layers. For any k ≥ 0, we denote by Mkj

all jobs (and parts of jobs) that are processed on ma-
chine j after time 2kOPT . Let Mk be the union over
all machines j of Mkj , i.e., Mk = ∪1≤j≤mMkj .

Let Rkj denote the min-weight of jobs in Mkj , i.e.,
Rkj =

∑
i∈Mkj

pi. Specifically if job i is partially
processed on machine j for x units of time after time
2kOPT , then its contribution to Rkj is x/eij = xpi/pij.
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Let Rk =
∑

1≤j≤m Rkj which is the min-weight of
jobs processed after time 2kOPT . Note that R0 = W
since it is the total min-weight of all jobs. Our main
lemma is the following:

Lemma 4.1. For all k ≥ 1, Rk ≤ 1
2 · Rk−1.

Proof. Let Oj be the set of jobs processed on machine
j by OPT . Let Okj be the intersection of Oj and Mk.
Let fkj be the minimum inefficiency of all jobs in Okj

in the equilibrium assignment. Each job in Okj could
switch to machine j. If Okj is not empty, then in the
equilibrium assignment, machine j is processing jobs of
inefficiency of at most of fkj up to time (2k − 1)OPT
otherwise the job with the minimum inefficiency in
Okj would move to machine j and complete by time
(2k − 1)OPT + OPT = 2kOPT .

Hence, machine j processes jobs of inefficiency at
most fkj between times (2k−2)OPT and (2k−1)OPT
which implies that

Rk−1,j − Rkj ≥ OPT/fkj .

On the other hand, all jobs in Okj are processed by
OPT on machine j with inefficiency of at least fkj and
hence their total min-weight is at most OPT/fkj . By
combining the last two inequalities, we conclude that
Rk−1,j − Rkj is at least the min-weight of jobs in Okj .
Summing up over all j, we get that

Rk−1 − Rk ≥ Rk,

since Mk is the union of Okj over all machines j. We
conclude that Rk−1 ≥ 2Rk as required.

We are now ready to complete the proof of the
Theorem. By applying the main lemma, b = 	log m

times we get that

Rb ≤ 1
m

· R0 =
W

m
≤ OPT .

In particular, this implies that the total processing time
of jobs of inefficiency 1 in Mb is at most OPT . Hence
each such job ends by time (2b)OPT + OPT = (2b +
1)OPT . Consider a job that has not been completed
by time 2bOPT . Such job has an option to run on a
machine of inefficiency of 1. In that case it would start
no later than (2b + 1)OPT and would finish no later
than (2b+1)OPT +OPT = (2b+2)OPT (since its min-
weight is at most OPT ). Since the assignment is a Nash
equilibrium, we conclude that the maximum completion
of any job is at most (2b + 2)OPT ≤ (2 log m + 4)OPT
as needed.

Remark 1. The above proof can be extended to bound
the price of anarchy for mixed Nash equilibria of the

inefficiency-based policy. We can prove a lemma for
mixed strategies similar to Theorem 4.1 with the bound
of O(log m). Then using the Hoeffding inequality and
the framework developed by Czumaj and Vocking [9]
(and also used by Awerbuch et. al. [2]), we can prove
that the price of anarchy for mixed Nash equilibria for
this policy is Θ(log m).

5 A Lower Bound for Local Policies
In Section 3, we proved that the price of anarchy for any
strongly local ordering set of policies is at least Ω(m).
Here, we show that the price of anarchy for any set of
local ordering policies is at least Ω(log m). As a warm-
up example, we show that our analysis is almost tight
for the inefficiency-based policy.

Theorem 5.1. The price of anarchy for R||Cmax when
the ordering strategy is by non-decreasing inefficiency is
at least log m.

Proof. We use a standard example to show that even
for the restricted assignment model (B||Cmax) the price
of anarchy of this strategy is at least log m. Not that
for B||Cmax the inefficiency of every job is precisely 1
on any legal machine for that job. Hence the algorithm
may order the jobs on each machine in any order. In this
proof, we assume a global tie breaking rule on the order
of all jobs. Without loss of generality a job with a lower
index has a higher priority (otherwise we can rename
the jobs). In the example, there are m = 2q machines
and m − 1 jobs. All jobs have unit size. Each job can
be assigned to two machines. The jobs are partitioned
into log m groups. For 1 ≤ k ≤ q, there are m/2k jobs
in group k. Job l of group k for 1 ≤ l ≤ m/2k can
be assigned to machines l and m/2k + l. The optimal
algorithm can assign that job to machine m/2k + l and
get a makespan of 1. We claim that if this job is assigned
to machine l, it is a Nash equilibrium and results in
a makespan of log m (machine 1 has log m completion
time). It is easy to verify that all jobs in group k have
a completion time of k and if they would move to the
other option they would still have a completion time of
k. Hence this assignment is a Nash Equilibrium which
completes the proof.

Now, we use the structure of the standard example in
Theorem 5.1 to prove the following general lower bound:

Theorem 5.2. The price of anarchy for all determinis-
tic non-preemptive local policies satisfying the IIA prop-
erty for R||Cmax is at least Ω(log m).

Proof. Without loss of generality, we assume that m =
2q. We recall that deterministic non-preemptive local
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policies satisfying the IIA property correspond to order-
ing the jobs in a certain order according to all parame-
ters of the jobs assigned to that machine. That means
that the order depends on the IDs of jobs and their full
vector of processing times on all machines. Given a set
of local ordering policies, we construct an instance sim-
ilar to the example used in Theorem 5.1. We start with
m2−m

2 jobs from which exactly m − 1 jobs are used in
the final instance. In particular, all jobs are of unit size
and can be assigned to precisely two machines. More-
over, the ID of a possible job that can be assigned to
machine j and machine j′ is unique (say it is mj + j′).
If we restrict ourselves only to these types of jobs, then
there are at most m−1 jobs that can be assigned to each
machine j. Specifically, these jobs can be described as
(j, j′) for all j �= j′, since all remaining parameters (i.e.
ID and the full load vector) are exact functions of the
pair (j, j′). A local policy of each machine j for any
1 ≤ j ≤ m corresponds to an ordering of these jobs to
be processed on machine j. Let σj be this ordering.

Let A0 = {1, . . . , m} and J0 = ∅. For k from 1 to
log m, we construct Ak and Jk from Ak−1 as follows:
first, let Ak = ∅, and Jk = ∅. We perform the following
process m

2k times: Choose an arbitrary machine j from
Ak−1. Find the job of the highest priority to run on
machine j among all jobs (j, j′) where j′ ∈ Ak−1, and
denote its ID by (j, mk(j)), i.e., (j, mk(j)) is the first
job in σj among jobs (j, j′) ∈ Ak−1 × Ak−1. Then, let
Ak = Ak ∪ {j} and Jk = Jk ∪ {(j, mk(j))}. Also, let
Ak−1 = Ak−1\{j, mk(j)}. At the end of the process,
Ak−1 becomes empty, Ak has m

2k indices, and Jk has m
2k

jobs.
The set of jobs for the final instance is the union

of the jobs Jk for 1 ≤ k ≤ log m, i.e., ∪1≤k≤log mJk.
Hence we have m−1 jobs in the resulting instance. The
following solution of makespan 1 is the optimal solution:
assign job (j, mk(j)) ∈ Jk to machine mk(j). Consider
an assignment A in which each job (j, mk(j)) ∈ Jk is
assigned to machine j. We prove that this assignment
is a pure Nash equilibrium.

Using induction on k, we prove that for each k from
1 to log m, in assignment A, each job (j, mk(j)) ∈ Jk is
completed exactly at time k on machine j. Moreover, if
it switches to machine mk(j), its completion time is not
less than k. For the base of induction, job (j, m1(j)) ∈
J1 has more priority than all jobs (j, mk′

(j)) ∈ Jk′
for

2 ≤ k′ ≤ log m, and hence, its completion time is 1.
Also, this job would not want to switch to machine
m1(j). The proof of the induction step is similar to
the base case and follow from the fact that by the
construction of Jk, each job (j, mk(j)) ∈ Jk has more
priority than job (j, mk′

(j)) ∈ Jk′
for any k < k′.

This inductive argument proves that assignment A is

1 2 3 4
A 20 ∞ ∞ ∞
B 2 12 ∞ 1.98
C 4 24 25 3.95
D 5 28 ∞ 4.9

Table 1: An example without pure Nash equilibria: The
processing time of four jobs on four machines.

a pure Nash equilibrium, and its makespan is log m.
Specifically, machine j∗ ∈ Alog m has makespan log m,
since one job from each of J1, J2, . . . , J log m is scheduled
on this machine. This instance shows that for any set
of local ordering policies, there is an instance for which
the price of anarchy is at least Ω(log m).

6 Existence of Pure Nash Equilibria

Pure Nash equilibria may not exist for some strategic
games, and even if they exist, a sequence of best re-
sponses of players may not converge to them. Poten-
tial games are games for which we can find a potential
function that maps any state (or any set of strategies)
in the game to a number (or a vector) such that after
any best response of any player the value of the func-
tion strictly decreases (or lexicographically decreases).
Potential games possess pure Nash equilibria and any
random sequence of best responses of players converge
to pure Nash equilibria with probability one.

We can prove the corresponding game of any or-
dering policy for B||Cmax is a potential game and thus,
possess pure Nash equilibria, but this is not the case for
R||Cmax even for two machines. Moreover, we can prove
that the game corresponding to the inefficiency-based
policy for two machines always possess pure Nash equi-
libria, but this is not true for any number of machines.
Here, we only prove the main result of this section, and
leave the rest of them to the appendix.

Theorem 6.1. The corresponding game to
inefficiency-based policy for R||Cmax may not pos-
sess any pure Nash equilibrium.

Proof. Consider an instance of R||Cmax with 4 machines
and 5 jobs A, B, C, D, and T . Job T can only be
scheduled on machine 4 and its processing time is
50. The ordering on machine 4 is T, B, C, D, A. The
processing times of jobs A, B, C, D on machines 1, 2, 3, 4
are depicted in Table 1.

As a result, the ordering of jobs in the inefficiency-
based policy for machine 1 is (A, B, C, D, T ), and for
machine 2 is (D, B, C, A, T ), and for machine 3 is
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(C, A, B, D, T ). We claim that no pure Nash equilib-
ria exist for this example. We have found this ex-
ample by solving a mathematical program that cap-
tures the inequalities required to prove that no pure
Nash equilibrium exists. Here, we give a brief de-
scription of why this instance does not have any pure
Nash equilibrium. Job T is always scheduled on ma-
chine 4 and no other job wants to go to machine 4.
We can show a schedule on four machines as a se-
quence of subsets of jobs in each machine, for exam-
ple, if jobs A, B, and C are on machine 1, job D is
on machine 2, and job T is on machine 4, the corre-
sponding sequence is (ABC, D, , T ). From this sched-
ule, job C has incentive to switch to machine 3, and the
resulting schedule is (AB,D,C,T). This move is shown
briefly by (ABC, D, , T ) → (AB, D, C, T ). Similarly,
(ABD, , C, T ) → (ABD, C, , T ) → (AD, BC, , T ) →
(ACD, B, , T ) → (AD, DB, , T ) → (ABC, D, , T ) →
(AB, D, C, T ) → (ABD, , C, T ). Also (AD, B, C, T ) →
(ACD, B, , T ). Checking that no other pure Nash equi-
librium exists is straightforward.

This theorem indicates the need for a coordination
mechanism with small price of anarchy for which we can
prove convergence to pure Nash equilibria.

7 A Polylogarithmic Upper Bound with Fast
Convergence

In Section 4, we designed a scheduling policy for each
machine that has a low price of anarchy. However,
in Section 6, we proved there may be no (pure) Nash
Equilibrium for the jobs and the system may not con-
verge. In this section, we show that we can in-
crease slightly the price of anarchy from O(log m) to
O(log2 m), but guarantee existence of Nash Equilibria
as well as convergence to pure Nash equilibria.

The algorithm is as follows. Each machine simulates
b = 	log m
 sub-machines. Sub-machine l for 0 ≤ l ≤
b−1 of machine j runs only jobs of inefficiency of at least
2l and less than 2l+1. Machine j allocates continuously
the same time for each of its sub-machines even if
there are no jobs to process on some sub-machines (this
requires preemption and idle time). A job assigned to
machine j will run on sub-machine l of machine j where
l = �eij� given that eij < m. If eij ≥ m, the job
will be delayed for ever on machine j. To complete the
description of the processing strategy, we need to define
the order in which each sub-machine processes its jobs.
If it is an arbitrary order, we call the family of strategies
Split & Any. If it is ordered according to ShortestFirst
we call it Split & Shortest.

Given an instance of the R||Cmax problem on m
machines, we create a corresponding instance of those

jobs to mb sub-machines as follows: if in the original
instance job i has processing time pij , then it would
have processing time bpij on sub-machines lj of machine
j where lj = �eij� given that eij < m. On all other sub-
machines of j (in case eij ≥ m on all sub-machines of
j) the processing time is infinite. We start with the
following lemma

Lemma 7.1. Given an instance to the R||Cmax problem
and its corresponding instance on mb sub-machines.

1. Given an assignment for the original instance on
the m machines, we can get an assignment for
the corresponding instance on the mb sub-machines
while increasing the makespan by a factor of at most
2b. In particular, the optimal makespan increases
by a factor of at most 2b.

2. Given an assignment for the corresponding instance
on the mb sub-machines, we can get an assignment
for the original instance where the completion time
of each job remains the same (and in particular the
makespan does not increase).

Proof. The second part of the lemma is easy. Each
machine simulates the b sub-machines continuously and
provides 1/b of the time for each. Since the processing
time of each job in the corresponding instance is b times
its original processing time then the completion time of
each job remains the same as needed.

Next, we prove the first part of the lemma. Given
the an assignment to the original instance we create a
feasible assignment to the new instance with increase
in makespan by factor of at most 2b. We do it in two
steps. In the first step we create a new assignment for
the original instance where no job i runs on machine
j with eij ≥ m. This will (at most) double double
the makespan. We do it by simply moving each job
i that runs on machine j with eij ≥ m to the best
machine for that job, i.e., to machine j′ where eij′ = 1.
Let I be the set of such jobs. Clearly the makespan
has increased additively by at most

∑
i∈I pi (even if all

these jobs were to go on the same machine). However∑
i∈I pij ≥ ∑

i∈I mpi. Hence the original makespan was
at least

1
m

∑

i∈I

pij ≥ 1
m

∑

i∈I

mpi =
∑

i∈I

pi

which means that the makespan at most doubled.
In the second step, we create from the modified

assignment an assignment for the sub-machines instance
by increasing the makespan by a multiplicative factor
of b. This is easily done by assigning job i that is
assigned to machine j to the sub-machine l = �eij�
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of machine j which is feasible and always exists since
eij < m. The load of each sub-machine of machine j
does not increase since the jobs were split among the
sub-machines. However, since the processing time is
multiplied by b, the completion time is scaled up by
a factor of b. Hence, after applying the two steps the
makespan for the corresponding instance is increased by
at most 2b as required.

Now, we can easily prove the following:

Theorem 7.1. The price of anarchy for R||Cmax using
Split & Any is O(log2 m). In particular, the price of
anarchy for unrelated machines using Split & Shortest
is O(log2 m).

Proof. We can view Split & Any for the original instance
as processing the jobs on the corresponding instance in
‘almost’ non-decreasing order of the inefficiency. All
jobs on each sub-machine have ‘almost’ the same (i.e.
up to factor of 2) inefficiency. If we change the size of
jobs to have precisely the same inefficiency then by using
Theorem 5.1 the price of anarchy is at most O(log m)
with respect to the optimal assignment for the corre-
sponding instance (with the original size we lose only
additional factor of 2). Nevertheless, the makespan of
the optimal assignment for the corresponding instance is
at most O(log m) times the the makespan of the optimal
assignment of the original instance. Hence the price of
anarchy of Split & Any is O(log2 m) with respect to its
optimum. Since, Split & Shortest belongs to the family
of Split & Any its price of anarchy is not larger.

Now, we show that our analysis is tight.

Theorem 7.2. The price of anarchy for R||Cmax using
Split & Shortest is at least log2 m.

Proof. We use again a variation on the standard ex-
ample from Theorem 5.1 to show that even for the re-
stricted assignment model (B||Cmax) the price of anar-
chy of this strategy is at least log2 m. Note again that
for B||Cmax, the inefficiency of every job is precisely 1 on
any legal machine for that job. Hence, only the first sub-
machine of each machine is doing any work. We use the
example from Theorem 5.1 but we slightly perturb the
job sizes. All jobs are of processing time slightly smaller
than 1 where all jobs in class k are slightly shorter than
all jobs in class k + 1. Hence the algorithm may order
the jobs on each machine (on the first sub-machine) ac-
cording to classes and hence we get a similar (up to a
small perturbation) example as in Theorem 5.1. Since
only one sub-machine is active, the makespan of the
example described is multiplied by log m and becomes
log2 m where the optimum remains the same i.e., 1.

Finally, we show that this policy converges to a
Nash equilibrium very fast.

Theorem 7.3. The corresponding game for the Split
& Shortest policy is a potential game. Moreover,
any sequence of best responses of players consisting
of n rounds of all players converges to a pure Nash
equilibrium.

Proof. The completion time of each job in Split &
Shortest is precisely equal to the completion time of
each job in the corresponding instance on the mb sub-
machines. That instance is ShortestFirst on each sub-
machine. Hence, any sequential improvement process
converges to a Nash equilibrium [11, 17]. A potential
function for the ShortestFirst policy is the vector of the
completion time (sorted in non-decreasing order) of all
jobs which decreases lexicographically after each best
response. Also it is proved in [17] that at most n
rounds of best responses of players converges to pure
Nash equilibria in this game.

8 Open Problems

In this paper, we proved that the best achievable price
of anarchy by strongly local and local ordering policies
are Θ(m) and Θ(log m). Ordering policies character-
ize all deterministic non-preemptive policies satisfying
the IIA property. An interesting open problem is to de-
sign preemptive or randomized policies with a constant
price of anarchy, or to prove that this is not possible.
Another interesting open problem is the speed of con-
vergence to approximate solutions for the inefficiency-
based policy [21]. Finally, since pure Nash equilibria for
the inefficiency-based policy do not necessarily exist, it
would be interesting to bound the approximation ratio
of the sink equilibria [15].
Acknowledgements. We thank Allan Borodin for
interesting discussions about related work.
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Appendix

A Proof of Theorem 3.2
Proof. In order not to deal with the issue of breaking
ties (which plays a major role in the general lower
bound), we would make all jobs of different size. We
construct the following instance. There are m− 1 types
of jobs. For j = 1 to m− 1, there are nj = 2 (m−1)!

(j−1)! jobs
of type j. Job k for 1 ≤ k ≤ nj of type j has processing
time 2

nj
(1 + εkj) = (j−1)!

(m−1)! (1 + εkj) on machine j and
2j
nj

(1 + εkj) = j!
(m−1)! (1 + εkj) on machine j + 1 and

infinite (or large enough) on all other machines. We
choose 0 < εkj < ε for some small enough ε j + 1 where
εkj < εk+1,j for all k and j and εnj ,j < ε1,j+1.

The optimal solution may use the following assign-
ment. Assign all nj jobs of type j on machine j. This
assignment results in completion time of at most 2(1+ε)
for each machine (except the m’th one which remains
empty).

Consider the following assignment. Half of the jobs
of type j are assigned to machine j and half to machine
j + 1 (we later specify which half). Then Machine j +1
for j = 1 to m−2 would have a load of slightly more than
(nj/2)(2j/nj) = j of jobs of type j and slightly more
than (nj/2)(2/nj) = 1 of jobs of type j + 1. Machine
1 has a load of slightly more than 1 (type 1 jobs) and
machine m a load of slightly more than m − 1 (type
m − 1 jobs).

Note that all jobs on each machine have approxi-
mately the same size. Since we set εkj < εk′,j+1 for all
j and k, k′ this implies that jobs of type j are processed
before jobs of type j + 1 (on machine j + 1).

Finally, we have to specify which set of jobs are
actually assigned to each machine. This assignment
defines the order of jobs on each machine. Assume for
a moment that εkj would have been 0. This would
define a set of completion times for all jobs of type j
on machines j and j + 1. Assign the jobs of type j
to the two machines (j and j + 1) in non-decreasing
order of the ID k according to the non-decreasing order
of completion time of that jobs. We claim that this
assignment is a Nash Equilibrium. Moreover the price
of anarchy is about m/2.

Immorlica et.al. [17] observed that the set of pure
Nash equilibria of the ShortestFirst policy is equivalent
to the output of the shortest-first greedy algorithm
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of Ibarra and Kim [16]. Therefore, the above lower
bound implies the lower bound of m

2 for the shortest-
first greedy algorithm.

B Pure Nash equilibria for Special Cases

In this section, we investigate the existence of pure
Nash equilibria for general ordering policies and for
some special cases. In particular, we prove the following
theorems.

Theorem B.1. The corresponding game of any order-
ing policy is a potential game for B||Cmax. Thus, it
has pure Nash equilibria for B||Cmax. Also, if the
global ordering for all machines is the same, then pure
Nash equilibria exist for the corresponding game of the
R||Cmax. However, for R||Cmax, there are ordering poli-
cies without any pure Nash equilibria even for two ma-
chines.

Proof. Let w(i, j) be the position or rank of job i in the
global ordering of machine j, i.e., job i is at the w(i, j)s
position in the global ordering of machine j. Given a
schedule S of jobs on all machines, let mi be the machine
of job i and Ti be the starting time of job i. In order
to define the potential function for S, we add a dummy
job dj of length ∞ to the end of each machine j. The
rank of the dummy job dj on machine j is n + 1, i.e.,
w(dj , j) = n + 1, and mdj = j. After adding these
dummy jobs, we find the potential function for schedule
S as follows: sort the jobs in the non-decreasing order
of their starting time, and if there are ties between the
starting times, sort them in the non-decreasing order
of their ranks w(i, mi). Since we added a dummy
job for each machine, the length of the vector of the
potential function is n + m. Let the vector of jobs in
this order be (1, 2, . . . , n+m). Therefore, by definition,
T1 ≤ T2 ≤ . . . ≤ Tn+m and if Tl = Tl+1, then w(l, ml) ≤
w(l + 1, ml+1). The potential function for this schedule
S is (w(1, m1), w(2, m2), . . . , w(n + m, mn+m)). If job k
plays his best response and goes to machine m′

k instead
of machine mk, the starting time of job k decreases
(since for B||Cmax when a job improves its completion
time, it improves its starting time as well). As a result,
job k occupies an earlier position in the corresponding
vector of the new schedule. Job k cannot be the last job
on machine m′

k, since each machine has a dummy job
who is the last. Let job k′ be the job after k on machine
m′

k after k moves (note that k′ might be a dummy job).
The rank of job k is less than the rank of job k′ on
machine m′

k. This proves that the potential function
decreases lexicographically. Therefore, the game is a
potential game.

It is not hard to prove that if the global ordering
for all machines is the same, then pure Nash equilibria

exist for the corresponding game of the R||Cmax and the
game is a potential game. If the global ordering on all
machines is (1, 2, . . . , n) and the completion time of job
i in schedule S is Ci(S), then the potential function in
this case for schedule S is (C1(S), C2(S), . . . , Cn(S)).

Finally, for R||Cmax, there are examples even for
two machines for which the corresponding game does
not have any pure Nash equilibrium. Consider an
example with two machines 1 and 2, and three jobs
A, B, C. The global ordering for machine 1 is (A, B, C)
and the global ordering for machine 2 is (C, A, B). The
processing time of jobs on machines are pA1 = 12,
pB1 = 16, pC1 = 2, pA2 = 10, pB2 = 10, pC2 = 16. It is
not hard to check that no set of strategies of players is
a pure Nash equilibrium in this game.

The above theorem shows that an arbitrary set of
ordering policies may not have pure Nash equilibria even
for two machines. We showed that the corresponding
game of the inefficiency-based policy may not possess
pure Nash equilibria. The following theorem shows
that the inefficiency-based policy always have pure Nash
equilibria for two machines.

Theorem B.2. The inefficiency-based mechanism al-
ways possess pure Nash equilibria for two machines.

Proof. The proof is by induction. The base of induction
is for one job for which the proof is trivial. Consider
the most inefficient job on both machines and call it
A. We do not let A go on the machine for which it is
less efficient, say machine 1. The induction is on the
number of pairs of jobs and machines (i, j) such that
job i can be scheduled on machine j. For the instance
for which job A cannot be scheduled on machine 1, we
find a pure Nash equilibrium S by induction. For the
induction step, we would like to change this equilibrium
S to an equilibrium for the original instance. The only
possibility is that job A in S wants to switch to machine
1. If we let A move to machine 1, no other job from
machine 2 wants to move to machine 1. We claim that
jobs from machine 1 do not want to switch to machine
2 either. Note that job A is larger on machine 1 than
on machine 2 and hence machine 1 ends in schedule
S (without job A) before job A starts on machine 2,
otherwise A would not like to move from machine 2.
Hence no jobs from machine 1 want to move to machine
2 (although job A left machine 2), since they would
finish later if they move.
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