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ABSTRACT
The literature on algorithmic mechanism design is mostly
concerned with game-theoretic versions of optimization prob-
lems to which standard economic money-based mechanisms
cannot be applied efficiently. Recent years have seen the
design of various truthful approximation mechanisms that
rely on enforcing payments. In this paper, we advocate the
reconsideration of highly structured optimization problems
in the context of mechanism design. We argue that, in such
domains, approximation can be leveraged to obtain truthful-
ness without resorting to payments. This stands in contrast
to previous work where payments are ubiquitous, and (more
often than not) approximation is a necessary evil that is
required to circumvent computational complexity.

We present a case study in approximate mechanism de-
sign without money. In our basic setting agents are located
on the real line and the mechanism must select the location
of a public facility; the cost of an agent is its distance to
the facility. We establish tight upper and lower bounds for
the approximation ratio given by strategyproof mechanisms
without payments, with respect to both deterministic and
randomized mechanisms, under two objective functions: the
social cost, and the maximum cost. We then extend our
results in two natural directions: a domain where two fa-
cilities must be located, and a domain where each agent
controls multiple locations.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; J.4 [Computer Applications]:
Social and Behavioral Sciences—Economics

General Terms
Algorithms, Theory, Economics
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1. INTRODUCTION
The vibrant field of algorithmic mechanism design, which

originated in the work of Nisan and Ronen [25], deals with
game-theoretic versions of (often Internet-related) optimiza-
tion problems such as task scheduling and resource allo-
cation. In these settings the problem input is distributed
among selfish agents; the agents might lie about their pri-
vate information if this serves their own ends, resulting in a
deterioration in the quality of the outcome. A mechanism is
a function that selects an outcome, and possibly also a pay-
ment scheme, given the reported types of the agents. The
goal is then to design mechanisms that encourage truthful-
ness while optimizing an objective function.

It has been observed [8] that there are two major classes
of problems in algorithmic mechanism design. The first class
contains problems for which there exist optimal truthful
mechanisms, but the problem is computationally intractable.
Typical examples include the line of work on combinatorial
auctions (see, e.g., [17, 15, 11]), where the objective function
is usually the maximization of the social welfare, that is, the
sum of agents’ utilities. For this objective function a truth-
ful optimal mechanism is given by the (now) well known
Vickrey-Clarke-Groves (VCG) mechanism (see, e.g., [24]).
VCG uses payments in order to align the interests of indi-
vidual agents with the interests of society. Unfortunately, it
turns out that an approximation of the social welfare is insuf-
ficient to guarantee truthfulness using VCG. Therefore, re-
searchers have focused on designing truthful yet efficient ap-
proximation mechanisms; by approximation we refer to the
standard multiplicative sense, that is, an α-approximation
mechanism always returns a solution that is within an α-
factor of the optimal solution. In other words, researchers
circumvent the computational hardness by resorting to ap-
proximation, and at the same time enforce tailor-made pay-
ments to guarantee truthfulness. Papers about scheduling
on related machines (see, e.g., [2, 1, 10]) also fall into the
first class, although in the scheduling domain the objective
is usually to minimize the makespan.

The second (significantly smaller) class of problems in-
volves optimization problems which are not necessarily in-
tractable, but for which there is no optimal truthful mech-
anism. The prominent problem in this class is scheduling
on unrelated machines (see, e.g., [25, 16, 8]). In such do-
mains one might investigate the optimal approximation ratio
achievable by any truthful mechanism, regardless of compu-
tational feasibility.

The assumption underlying essentially all1 previous work

1There are three exceptions, discussed in the sequel.
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on truthful approximation mechanisms is the existence of
money, or, in other words, the ability to make payments.
This assumption is explicit in Nisan and Ronen’s very def-
inition of mechanism [25], but is easily challenged when it
comes to computational settings. In particular, in Inter-
net domains payments are notoriously difficult to imple-
ment, mainly due to security and banking issues. Moreover,
Schummer and Vohra [31] note that “there are many impor-
tant environments where money cannot be used as a medium
of compensation”, due to ethical considerations (for instance,
in political decision making) or legal considerations (e.g., in
the context of organ donations). It is therefore natural to ask
whether it is possible to design truthful mechanisms without
payments; such mechanisms are known as strategyproof in
the social choice literature.

Our Agenda, or: What is Approximate Mechanism

Design Without Money? We consider game-theoretic
optimization problems where returning the optimal solution
is not strategyproof. Our main conceptual contribution is
the explicit suggestion that approximation can be used to
obtain strategyproofness without resorting to payments; In
other words, we propose achieving strategyproofness, with-
out using money, by sacrificing the optimality of the solu-
tion. In essence, this agenda is reminiscent of the second
class of problems discussed above, in the sense that approx-
imation is seen to enable truthfulness rather than hinder
it. However, our rejection of money stands in contrast to
the existing work in algorithmic mechanism design, where
payments are ubiquitous.

The contrast with previous work becomes even more strik-
ing when one considers (as we do in this paper) computa-
tionally tractable optimization problems where there is an
optimal, computationally efficient, truthful, payment-based
mechanism, but there is no optimal truthful mechanism with-
out money. Crucially, this type of problems does not fall
into either of the two classes mentioned above. We there-
fore have a new class of problems that has previously been
disregarded, and, we suggest, should be reconsidered.

Importantly, our agenda only applies to optimization prob-
lems where there exist reasonable strategyproof mechanisms
without payments. In particular, we must escape social
choice impossibility results such as the well known Gibbard-
Satterthwaite Theorem [14, 29] and its variations, e.g., the
important paper of Barberà and Peleg regarding continu-
ous preferences [6]. Hence, we consider highly structured
domains where these results do not hold.

Our Results. This paper presents a case study in approxi-
mate mechanism design without money. In the basic domain
that we study, each agent i has a location xi ∈ R. Given the
locations of all the agents, a mechanism selects the location
y ∈ R of a facility. The cost of agent i is simply the distance
|y − xi|. For example, xi might be the location of the house
of agent i on a street, and y might be the location of a gro-
cery store or a public library. This type of preferences (more
accurately, a slight generalization thereof) is known as sin-
gle peaked. Single peaked preferences and their extensions
have been extensively studied in the social choice literature,
starting with the work of Moulin [23]; see the surveys by
Barberà [5] and Sprumont [32], and the references therein.
We use the terminology of facility location problems, but the
facility is simply an abstraction of a public good, and the
same domain can also be (and has been) used to represent

political policies, economic decisions, locating mirrors in a
network, etc. Under many of these interpretations payments
may be infeasible, for the reasons discussed above.

We study the foregoing, basic setting in Section 2. We
observe that choosing the median location is a group strate-
gyproof (i.e., even coalitions of agents cannot gain by lying)
mechanism that minimizes the social cost, that is, the sum
of the agents’ costs. However, if the goal is to minimize the
maximum cost, selecting the optimal facility location—the
average of the leftmost and rightmost locations—is no longer
strategyproof. With respect to this objective function, we
give a deterministic group strategyproof mechanism (with-
out money) that yields an approximation ratio of 2, and pro-
vide a matching lower bound that holds even against (indi-
vidually) strategyproof deterministic mechanisms (without
money). Further, we give a group strategyproof randomized
mechanism with an approximation ratio of 3/2, and provide
a matching strategyproof lower bound. These results are
summarized in Table 1.

We subsequently study two natural extensions of the basic
setting. In both settings, the optimal solution is not strate-
gyproof even with respect to the social cost, and we resort
to strategyproof approximation mechanisms, some straight-
forward and some nontrivial. Section 3 deals with a set-
ting where two facilities must be located; the cost of an
agent is its distance to the nearest one. Our main result of
Section 3 is a randomized strategyproof 5/3-approximation
mechanism for the maximum cost objective function. This
result is notable since the mechanism (Mechanism 2) incor-
porates several new ideas in order to achieve strategyproof-
ness, and, unlike other mechanisms, the difficult part of its
analysis (Theorem 3.5) is the proof of strategyproofness.

Section 4 is concerned with a setting where only one fa-
cility must be located, but each agent is associated with
multiple locations (e.g., a real estate agent), and is inter-
ested in optimizing the objective function with respect to
its own multiset of locations (whereas the designer is inter-
ested in optimizing over the entire multiset of locations).
In this section, our main results are a randomized strat-
egyproof mechanism that yields a 2-approximation to the
social cost when there are two agents that control the same
number of locations, and a randomized group strategyproof
mechanism that has a tight approximation ratio of 3/2 for
the maximum cost. Due to space constraints and the sheer
number of results we do not list them all here, but rather
refer the impatient reader to Tables 2 and 3.

Related Work. The origins of the agenda of approximate
mechanism design without money can be traced to the paper
of Dekel et al. [9] on incentive compatible learning, a line of
work that was followed up in recent papers [20, 21]. It turns
out that the study of incentives in general learning-theoretic
domains reduces to simpler settings where strategyproof ap-
proximation mechanisms without money can be designed.
There are some mathematical connections between our work
and that of Dekel et al. [9], on which we elaborate in Sec-
tion 4. One of the main contributions of this paper is that
we properly crystallize and explicitly advocate approximate
mechanism design without money.

Our agenda is reminiscent of the line of work on the frugal-
ity of mechanisms (see, e.g., [3, 12] in the context of buying
an s-t path). This body of research deals with designing
truthful mechanisms that have to pay as little as possible.
One way to see our work is as taking the concept of frugal-
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ity to the limit by requiring that the mechanism make no
payments.

The domain that we study in Section 3, in which two facil-
ities must be located on the real line, was previously studied
by Miyagawa [22]. He gave an interesting characterization of
strategyproof, Pareto-optimal, and continuous mechanisms
in this setting, where the last property informally means
that the facility moves continuously with the locations of
the agents. Unfortunately, continuity is incompatible with
approximation, hence we cannot technically utilize this re-
sult.

Incentives aside and taking an algorithmic point of view,
the problems that we deal with are the one-dimensional Eu-
clidean k-median and k-center problems, when the objective
functions are the social cost and the maximum cost, respec-
tively, and k = 1 (Section 2 and 4) or k = 2 (Section 3).
This may sound discouraging, but recall that we deliberately
focus on relatively simple, structured problems, and the do-
mains that we deal with are extremely well-studied in the
social choice literature. The k-median and k-center prob-
lems were extensively investigated, especially in the context
of clustering, and can be approximated using sophisticated
algorithms (see, e.g., [7, 4]).

Further afield, there is a body of work that deals with
mechanism design without money, but so far this was pur-
sued by relatively few computer scientists; for a survey see
the book chapter by Schummer and Vohra [31]. A promi-
nent example is the work on strategyproof mechanisms for
stable matchings [13, 28]. There are a few papers that deal
with the game-theoretic properties of existing Internet mech-
anisms that do not require payments, e.g., the recent work
on interdomain routing by Levin et al. [19]. Finally, our work
is remotely related to work on strategyproof mechanisms for
cost sharing in facility location problems (see, e.g., [18, 26]).

2. THE BASIC SETTING
Let N = {1, . . . , n} be a set of agents. Each agent i ∈

N has a location xi ∈ R. We refer to the collection x =
〈x1, . . . , xn〉 as the location profile.2

A (deterministic) mechanism in this simple setting is a
function f : Rn → R, that is, a function that maps a given
location profile to a location of a facility. If the facility is
located at y, the cost of agent i ∈ N is cost(y, xi) = |y−xi|.

A randomized mechanism is a function f from Rn to prob-
ability distributions over R. In other words, a randomized
mechanism allows us to randomly specify the location of the
facility for every given location profile. If f(x) = P , where
P is a probability distribution, the cost of agent i ∈ N is
defined as the expected distance from the location of i, i.e.,
cost(P, xi) = Ey∼P |y − xi|.

A mechanism f is strategyproof if an agent can never
benefit from reporting a false location, regardless of the
strategies of the other agents. In the current setting, this
means that for all x ∈ Rn, for all i ∈ N , and for all
x′

i ∈ R, cost(f(x), xi) ≤ cost(f(x′
i,x−i), xi), where x−i =

〈x1, . . . , xi−1, xi+1, . . . , xn〉 is the vector of the locations of
all agents in N \ {i}.

A mechanism is group strategyproof if for any location pro-
file x and any coalition S ⊆ N , there is no joint deviation
x′

S of the agents in S such that all the agents in S gain, that

2Some works on single peaked preferences restrict the loca-
tions to an interval; our results hold in that model as well.

is, for all x ∈ Rn, for all S ⊆ N , and for all xS ∈ R|S|, there
exists i ∈ S such that cost(f(x), xi) ≤ cost(f(x′

S ,x−S), xi).
Notice that it is possible to define (strong) group strate-
gyproofness by asking that it cannot be the case that all the
deviating agents do not lose and at least one gains. Some
of our group strategyproofness results do not hold under
this stronger definition. However, our (weaker) notion of
strategyproofness is very common in social choice, since in
settings where payments (and in particular, side payments)
cannot be made, an agent that does not strictly gain has no
incentive to become a member of the deviating coalition.

In this paper, we shall be interested in strategyproof mech-
anisms that also do well with respect to optimizing one of
two objective functions: minimizing the social cost, or min-
imizing the maximum cost.

The social cost of a facility location y ∈ Rn with respect
to the profile x ∈ Rn is sc(y,x) =

∑

i∈N
cost(y, xi); the

social cost of a distribution P with respect to x is sc(P,x) =
Ey∼P [sc(y,x)]. The maximum cost of a y with respect to x is
mc(y,x) = maxi∈N cost(y, xi), whereas the maximum cost
of P with respect to x is mc(P,x) = Ey∼P [mc(y,x)].

2.1 Social Cost
We warm up by tackling an easy question: is there a strat-

egyproof mechanism that minimizes the social cost? The so-
lution is very simple: choose the median location in x, which
we shall denote by med(x). Indeed, assume that n is odd,
n = 2k + 1. Any point that is to the left of the median has
higher social cost than that of the median since it is further
away from at least k + 1 locations and closer to at most k
locations, and the same holds for any point to the right of
the median. If n is even, n = 2k, and without loss of gen-
erality x1 ≤ x2 ≤ · · · ≤ xn, then any point in the interval
[xk, xk+1] is an optimal facility location. In this case, when
we refer to the median med(x) we mean the leftmost point
of the optimal interval, i.e., the kth order statistic.

As noted in Section 1, the structure of the preferences of
our agents is known in the social choice literature as single
peaked : the peak, or bliss point, of agent i is at xi, and
the closer a location is to xi, the more preferred it is. It
has long been known that, when agents have single peaked
preferences, the selection of the kth order statistic for some
k ∈ {1, . . . , n} is group strategyproof [23]; this is also very
easy to verify. In particular, selecting the median peak is
group strategyproof. Hence, in our basic setting, the social
cost can in fact be minimized using a group strategyproof
mechanism.

2.2 Maximum Cost
The second objective function that we consider is mini-

mizing the maximum cost. Here the situation becomes non-
trivial, even in the basic setting presented above. We will
first investigate deterministic mechanisms, and then turn
our attention to randomized mechanisms.

Deterministic Mechanisms. For a location profile x ∈
Rn, denote the leftmost location in x by lt(x) = mini∈N xi,
and the rightmost location by rt(x) = maxi∈N xi. Fur-
thermore, denote the center of the interval [lt(x), rt(x)] by
cen(x) = (lt(x) + rt(x))/2. Given x, the solution that min-
imizes the maximum cost is cen(x). Unfortunately, this so-
lution is not (even individually) strategyproof. Indeed, if
N = {1, 2}, x1 = 0 and x2 = 1, agent 2 can move the
optimal solution to its own location by reporting x′

2 = 2.
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A trivial, group strategyproof solution would be to choose
any kth order statistic for some k ∈ {1, . . . , n}. For rea-
sons that will become apparent in the sequel, we choose the
first order statistic, i.e., lt(x). Notice that any point in the
interval [lt(x), rt(x)] would give a 2-approximation to the
maximum cost. We have therefore obtained the following
straightforward result.

Theorem 2.1. f(x) = lt(x) is a group strategyproof 2-
approximation mechanism for the maximum cost.

Given the simplicity of our group strategyproof mecha-
nism, it may be somewhat surprising that no (even individ-
ually) strategyproof mechanism can do better, as the follow-
ing theorem asserts.

Theorem 2.2. Let N = {1, . . . , n}, n ≥ 2. Any deter-
ministic strategyproof mechanism f : Rn → R has an ap-
proximation ratio of at least 2 for the maximum cost.

Proof. We first deal with the case where N = {1, 2}, and
subsequently touch on extending the proof to an arbitrary
n.

Assume for contradiction that f : Rn → R is a strate-
gyproof mechanism and has an approximation ratio smaller
than 2 for the maximum cost. Consider the location pro-
file x where x1 = 0 and x2 = 1. Assume without loss of
generality that f(x) = 1/2 + ǫ, ǫ ≥ 0. Now, consider the
profile where x1 = 0 and x′

2 = 1/2 + ǫ. The optimum is the
average of the two locations, namely 1/4 + ǫ/2, which has a
maximum cost of 1/4 + ǫ/2. If the mechanism is to achieve
an approximation ratio better than 2, the facility must be
placed in (0, 1/2+ǫ). In that case, given the profile x, agent
2 can benefit by reporting x′

2 = 1, thus moving the solution
to 1/2 + ǫ, in contradiction to strategyproofness.

In order to extend this result to an arbitrary n, simply
locate all the agents N \ {1, 2} at 1/2 in each one of the
profiles described above. All the arguments given above go
through smoothly.

Randomized Mechanisms. We presently turn to ran-
domized mechanisms; we shall demonstrate that random-
ization allows us to break the deterministic lower bound of
2, given by Theorem 2.2. Indeed, we focus on the following
mechanism.

Mechanism 1. Given x, return lt(x) with probability 1/4,
rt(x) with probability 1/4, and cen(x) with probability 1/2.

It is possible to demonstrate that Mechanism 1 is group
strategyproof. Moreover, the mechanism gives an approxi-
mation ratio of 3/2, well below the deterministic lower bound.

Theorem 2.3. Mechanism 1 is a group strategyproof 3/2-
approximation mechanism for the maximum cost.

The proof of Theorem 2.3 is based on the observation that
if the interval over which the mechanism randomized con-
tracts, then the agents at the boundaries must be members
of the deviating coalition.

Proof of Theorem 2.3. By scaling the distances, we
can assume without loss of generality that lt(x) = 0 and
rt(x) = 1. We shall first prove the claim about the approxi-
mation ratio.

The optimum cost is 1/2, whereas the expected cost of
the algorithm is

1

4
· 1 +

1

4
· 1 +

1

2
·
1

2
=

3

4
.

The approximation ratio is therefore 3/2.
We now turn to proving group strategyproofness. Let S ⊆

N be a coalition. We must demonstrate that the agents in
S cannot all gain by deviating.

A crucial observation is that, given x ∈ Rn, the only de-
viations that affect the outcome of the mechanism are the
ones that modify the locations of the extreme agents lt(x)
and rt(x). The location of lt(x) can always be pushed to
the left and the location of rt(x) can always be pushed to
the right. However, lt(x) can be pushed to the right only if
the leftmost agent is a member of the deviating coalition S,
that is, argmini∈Nxi∩S 6= ∅. Similarly, rt(x) can be pushed
to the right only if the rightmost agent is a member of S.

Let x ∈ Rn, and let x′ ∈ Rn where, for every i 6= S, x′
i =

xi. Further, let ∆1 = lt(x)− lt(x′), and ∆2 = rt(x′)− rt(x).
We consider four cases.

Case 1: ∆1 ≥ 0 and ∆2 ≥ 0. Let i ∈ S; clearly xi ∈
[lt(x), rt(x)]. Denoting Mechanism 1 by f , we have:

cost(f(x′), xi) =
1

4
· (xi − lt(x) + ∆1) +

1

4
· (rt(x) − xi + ∆2)

+
1

2
·

∣

∣

∣

∣

xi −
lt(x) − ∆1 + rt(x) + ∆2

2

∣

∣

∣

∣

≥
1

4
· (xi − lt(x)) +

1

4
· (rt(x) − xi)

+
1

2
·

∣

∣

∣

∣

xi −
lt(x) + rt(x)

2

∣

∣

∣

∣

= cost(f(x), xi) .

Case 2: ∆1 < 0 and ∆2 ≥ 0. In this case, it must be true
that the leftmost agent, which is located at 0, is a member
of S. It is obvious that this agent cannot benefit from the
deviation, and in fact must strictly lose, since the leftmost
point, the center, and possibly the rightmost point are all
moving further away from the agent’s location at 0.

Case 3: ∆1 ≥ 0 and ∆2 < 0. The case is symmetric to
Case 2.

Case 4: ∆1 < 0 and ∆2 < 0. In this case, the leftmost
agent, located at 0, and the rightmost agent, located at 1,
must both be members of S. We shall demonstrate that
they cannot both gain from the deviation.

cost(f(x′), 0) =
1

4
· ∆1 +

1

4
· (1 − ∆2) +

1

2
·
∆1 + 1 − ∆2

2

= cost(f(x), 0) +
∆1 − ∆2

2
.

Similarly,

cost(f(x′), 1) = cost(f(x), 1) +
∆2 − ∆1

2
.

We conclude that

cost(f(x′), 0)+cost(f(x′), 1) = cost(f(x), 0)+cost(f(x), 1) ,

and hence it holds that either cost(f(x′), 0) ≥ cost(f(x), 0)
or cost(f(x′), 1) ≥ cost(f(x), 1).

While the theorem implies that randomization allows us
to drop the feasible strategyproof approximation ratio from
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Objective Function Deterministic Randomized

Social Cost
UB: 1 GSP
LB: 1 SP

Maximum Cost
UB: 2 GSP (Thm 2.1)
LB: 2 SP (Thm 2.2)

UB: 3/2 GSP (Thm 2.3)
LB: 3/2 SP (Thm 2.4)

Table 1: A summary of the results of Section 2. UB and LB stand for upper bound and lower bound,

respectively. SP and GSP stand for strategyproof and group strategyproof, respectively.

2 to 3/2, we can also show that this is as far as randomization
can take us.

Theorem 2.4. Let N = {1, . . . , n}, n ≥ 2. Any random-
ized strategyproof mechanism has an approximation ratio of
at least 3/2 for the maximum cost.

In order to prove the theorem, we require two straightfor-
ward lemmata.

Lemma 2.5. Let N = {1, 2}, and let x ∈ R2. Let P be a
probability distribution over R such that

Ey∼P

[
∣

∣

∣
y −

x1 + x2

2

∣

∣

∣

]

= ∆ .

Then the expected maximum cost is

∆ +
|x1 − x2|

2
.

Proof. For every y ∈ R, we have that the maximum cost

is
∣

∣y − x1+x2

2

∣

∣ + |x1−x2|
2

. Therefore, the expected maximum
cost is

Ey∼P

[

∣

∣

∣
y −

x1 + x2

2

∣

∣

∣
+

|x1 − x2|

2

]

= ∆ +
|x1 − x2|

2
.

Lemma 2.6. Let N = {1, 2}, and let x1, x2 ∈ R. Let P
be a probability distribution over R. Then there exists i ∈ N
such that

Ey∼P [|y − xi|] ≥
|x1 − x2|

2
.

Proof. Let Y be a random variable distributed according
to P , and let X1 and X2 be random variables defined by
X1 = |Y − x1|, X2 = |Y − x2|. Then

E[X1] + E[X2] = E[X1 + X2] ≥ |x1 − x2| .

The lemma directly follows.

We are now ready to prove the theorem.

Proof of Theorem 2.4. As in the proof of Theorem 2.2,
we first deal with the case N = {1, 2}, and then extend the
proof to more agents.

Let f be a randomized mechanism. Consider the profile
x ∈ R2 where x1 = 0 and x2 = 1. We have that f(x) = P ,
where P is a distribution over R. By Lemma 2.6, there exists
i ∈ N , without loss of generality x2, such that cost(P, x2) ≥
1/2.

Now, consider the profile where x1 = 0, x′
2 = 2. By strat-

egyproofness, the expected distance from 1 must still be at
least 1/2, otherwise agent 2 gains from deviating from x2 to
x′

2. By Lemma 2.5 (with ∆ = 1/2), the expected maximum
cost is therefore at least 3/2, whereas the optimum has a

cost of 1; it follows that the approximation ratio of f is at
least 3/2.

In order to extend the proof to an arbitrary number of
agents n, we simply set the locations of the additional agents
to be 1/2; the proof works as before.

2.3 Discussion
Table 1 summarizes the results of Section 2. Our results

in this section are completely tight. As we move on to sig-
nificantly more involved settings, obtaining tight bounds in-
evitably becomes much more difficult.

Interestingly, if payments are allowed, it is possible to
obtain a truthful optimal solution even for the maximum
cost, by using VCG-like payments: each agent i ∈ N pays
the distance between the optimal facility location when x

is reported and the optimal facility location when x−i is
reported.

3. EXTENSION I: TWO FACILITIES
In this section we investigate a first natural extension to

the setting examined in Section 2: locating two facilities
instead of just one. A deterministic mechanism is now a
function f : Rn → R2, that is, the mechanism returns the
locations y ∈ R2 of both facilities given a location profile.
If y = 〈y1, y2〉, the cost of an agent is its distance to the
nearest facility: cost(y, xi) = min{|y1 − xi|, |y2 − xi|}. We
usually assume that y1 ≤ y2.

Similarly, a randomized mechanism returns a probability
distribution P over R2, and the cost of an agent is its ex-
pected distance to the nearest facility. We redefine sc(y,x)
and mc(y,x) in the obvious way according to the new defi-
nition of cost given above.

3.1 Social Cost
As before, we shall first look into minimizing the social

cost in a strategyproof way. Let us first consider the algo-
rithmic problem of locating two facilities in a way that min-
imizes the social cost, disregarding incentives. This problem
is quite simple, although this may not be immediately appar-
ent. Indeed, given a location profile x ∈ Rn, let the optimal
facility locations be y1, y2 ∈ R, y1 ≤ y2. Informally, we can
associate with y1 a multiset of locations L(x) ( {x1, . . . , xn}
(for “left”) whose cost is computed with respect to y1, and
similarly associate with y2 a multiset of locations R(x) (

{x1, . . . , xn} (for “right”) whose cost is computed with re-
spect to y2, such that for all xi ∈ L, xj ∈ R, xi ≤ xj .
Now, y1 is the median of L(x) and y2 is the median of R(x).
Hence, it is sufficient to optimize over the n − 1 possible
choices of L(x) and R(x).

Despite the algorithmic simplicity of the problem, and in
contrast to the single facility setting, minimizing the social
cost in the two facility setting is not strategyproof. Intu-
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itively, the reason is that it is impossible to elicit the struc-
ture of L and R in a strategyproof way. The next theorem
in fact establishes a lower bound of 3/2 −O(1/n).

Theorem 3.1. Let N = {1, . . . , n}, n ≥ 3. In the two
facility setting, any deterministic strategyproof mechanism
f : Rn → R2 has an approximation ratio of at least 3/2 −
O(1/n) for the maximum cost.

Proof. Let n ≥ 3. We construct a location profile x ∈
Rn as follows: x1 = −1, x2 = 1, and xi = 0 for all i ∈
N \{1, 2}. The optimal solution has a social cost of 1. Let f
be a mechanism, and let f(x) = 〈y1, y2〉 ∈ R2. If |y1| ≥

2

n−2
,

and |y2| ≥
2

n−2
, then sc(f(x),x) ≥ 2, hence the mechanism’s

approximation ratio is at least 2.
By the above, we can assume without loss of generality

that |y1| ≤
2

n−2
. Furthermore, assume without loss of gener-

ality that y2 ≤ 0. We consider a deviation of agent 2 to x′
2 =

3/2. Let f(x′
2,x−2) = 〈y′

1, y
′
2〉. The optimal solution 〈0, 3/2〉

has a social cost of 1, therefore we can assume once again
that |y′

1| ≤
2

n−2
. In addition, cost(〈y1, y2〉, x2) ≥ 1 − 2

n−2
,

hence by strategyproofness we have that |y′
2−x2| ≥ 1− 2

n−2
.

It follows that either y′
2 ≥ 2 − 2

n−2
, or y′

2 ≤ 2

n−2
. In both

cases, we get that

sc(〈y′
1, y

′
2〉, 〈x

′
2,x−2〉) ≥

3

2
−

2

n − 2
=

3

2
−O

(

1

n

)

,

hence the approximation ratio is at least 3/2 −O(1/n).

It can be verified that a group strategy proof (n − 1)-
approximation mechanism is given by choosing lt(x) and
rt(x) given the location profile x ∈ Rn. In brief, the reason
is that lt(x) ∈ L(x) and rt(x) ∈ R(x). The gap between
this result and the lower bound given by Theorem 3.1 is still
huge, and remains our most enigmatic open problem.

3.2 Maximum Cost
Let us now turn to strategyproof mechanisms that ap-

proximate the maximum cost. Similarly to the social cost
objective, the problem of locating two facilities in a way that
minimizes the maximum cost is computationally straightfor-
ward. Moreover, we can give a very accurate characteriza-
tion of the structure of the optimal solution. We shall first
require some notations.

Given x ∈ Rn, let the left boundary location be lb(x) =
max {xi : i ∈ N, xi ≤ cen(x)}, and the right boundary lo-
cation be rb(x) = min {xi : i ∈ N, xi ≥ cen(x)}. Now, de-
note dist(x) = max{lb(x) − lt(x), rt(x) − rb(x)}. The fol-
lowing lemma is the foundation of the positive results in this
subsection.

Lemma 3.2. Given x ∈ Rn, the optimal placement of two
facilities has a maximum cost of dist(x)/2.

Proof. As usual, we can assume without loss of gener-
ality (by scaling the distances) that lt(x) = 0, lt(x) = 1;
further, assume without loss of generality that lb(x) ≥ 1 −
rb(x), that is, dist(x) is defined by lb(x). We shall first show
that there is a solution with the announced cost. Indeed, let
y∗ with y∗

1 = lb(x)/2, y∗
2 = (rb(x) + 1)/2. It holds that

mc(y∗,x) = lb(x)/2 ≤ 1/4.
We argue that any solution must have a cost of at least

lb(x)/2. Indeed, consider first a solution y where y1 ≤ 1/2
and y2 ≤ 1/2, or y1 ≥ 1/2 and y2 ≥ 1/2; then mc(y,x) ≥

1/2, making this solution inferior to y∗. Now, Given that
the solution only locates one facility y1 to the left of 1/2,
we can assume that y2 ≥ 3/4, otherwise the cost is at least
1/4. Any location such that |y1 − lb(x)/2| = ǫ > 0 has a
cost of at least lb(x)/2+ ǫ, incurred by its distance to either
0 or lb(x). We conclude that the maximum cost is at least
lb(x)/2.

Deterministic Mechanisms. Given our experience with
the single facility case and Lemma 3.2, it is quite straight-
forward to obtain a 2-approximation, group strategyproof,
deterministic mechanism: given x ∈ Rn, simply select the
leftmost location lt(x) and the rightmost location rt(x). In-
deed, the maximum cost of our solution is dist(x), whereas
the maximum cost of the optimal solution, by Lemma 3.2,
is dist(x)/2. We have obtained the following theorem.

Theorem 3.3. f(x) = 〈lt(x), rt(x)〉 is a group strate-
gyproof 2-approximation mechanism for the maximum cost
in the two facility setting.

As for lower bounds, notice that, when there are two
agents it is possible to obtain an optimal strategyproof so-
lution by selecting the locations of the two agents. When
n ≥ 3, however, we can use a variation on the construction
in the proof of Theorem 2.2.

Corollary 3.4. Let N = {1, . . . , n}, n ≥ 3. Any de-
terministic strategyproof mechanism f : Rn → R2 has an
approximation ratio of at least 2 for the maximum cost in
the two facility setting.

Proof sketch. Use the same construction as in the proof
of Theorem 2.2 for n − 1 agents, and locate an additional
agent at, say, 10 in all the location profiles used in the proof.
In order to get a 2-approximation, one of the two facilities
must always be close to 10, whereas the same arguments
as before apply to the second facility and the rest of the
agents.

Randomized Mechanisms. Above we saw that, with
respect to deterministic mechanisms, the results from Sec-
tion 2 carry over quite smoothly to the two facility setting.
This is no longer true with respect to randomized mecha-
nisms, for a variety of reasons.

We consider the following mechanism. It is inspired by
Mechanism 1, but requires several additional new ideas: ran-
domizing over two equal intervals, unbalanced weights at
the edges, and correlation between the two facilities. These
“tricks” play a crucial role in satisfying the delicate strate-
gyproofness constraints associated with the two facility set-
ting.

Mechanism 2. Given x ∈ Rn, compute dist(x). Then
return y according to the following probability distribution:
〈lt(x), rt(x)〉 with probability 1/2, 〈lt(x) + dist(x), rt(x) −
dist(x)〉 with probability 1/6, and 〈lt(x) + dist(x)/2, rt(x) −
dist(x)/2〉 with probability 1/3.

The unbalanced weights inevitably harm the mechanism’s
approximation performance. Nevertheless, we shall demon-
strate that Mechanism 2 succeeds in breaking the determin-
istic lower bound of 2 by a significant margin.
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Objective Function Deterministic Randomized

Social Cost
UB: n − 1 GSP

LB: 3/2 −O(1/n) SP (Thm 3.1)
N/A

Maximum Cost
UB: 2 GSP (Thm 3.3)

LB: 2 SP (Cor 3.4)
UB: 5/3 SP (Thm 3.5)
LB: 3/2 SP (Cor 3.6)

Table 2: A summary of the results of Section 3. UB and LB stand for upper bound and lower bound,

respectively. SP and GSP stand for strategyproof and group strategyproof, respectively.

Theorem 3.5. Mechanism 2 is a strategyproof 5/3 ap-
proximation mechanism for the maximum cost in the two
facility setting.

The proof of the theorem is rather elaborate, and can
be found in the full version of the paper [27]. As in the
deterministic case, we observe that the lower bound of 3/2
given in Theorem 2.4 also holds, up to an additive term of
ǫ, in our current setting, as long as n ≥ 3.

Corollary 3.6. Let N = {1, . . . , n}, and let ǫ > 0. Any
randomized strategyproof mechanism has an approximation
ratio of at least 3/2 − ǫ for the maximum cost in the two
facility setting.

Proof sketch. We use the same construction as in the
proof of Theorem 2.4 for n−1 agents, and add an additional
agent located at a large enough value v(ǫ) that depends on
ǫ. Now, in order to obtain a small approximation ratio, the
expected distance of the right facility y2 from v(ǫ) must be
small, hence the probability that y2 is relevant to the first
n − 1 agents can be made arbitrarily small. We conclude
that the arguments of the proof of Theorem 2.4 work here
as well, up to an arbitrarily small additive term.

3.3 Discussion
Table 2 summarizes the results of Section 3. A truly in-

triguing gap is the one between the trivial n−1 strategyproof
upper bound for the social cost, and the lower bound of 3/2.
This problem seems straightforward at first, but has proved
quite elusive. We conjecture that it is possible to obtain a
deterministic lower bound of Ω(n). In fact, we can easily
prove an Ω(n) lower bound for group strategyproof mecha-
nisms.

Another gap is between our randomized upper bound of
5/3 for the maximum cost, and the lower bound of 3/2.
Moreover, it is unclear whether Mechanism 2 is group strat-
egyproof.

A natural, asked for way to further extend the results of
this section is to consider a setting with more than two facili-
ties. The computational problems involved are still tractable
when the number of facilities is constant. However, the intu-
itions behind the positive results given in this section (that
is, Theorems 3.3 and 3.5) already collapse even with respect
to three facilities.

Note that the preferences of the agents in the setting of
Section 3 are not single peaked. This fact is meaningful with
respect to the generality of our agenda.

4. EXTENSION II: MULTIPLE LOCATIONS
PER AGENT

Another natural extension of the setting of Section 2 is
the one in which each agent controls multiple locations. Let

wi be the number of locations controlled by agent i ∈ N .
We denote the set of locations that agent i controls by
xi = 〈xi1, . . . , xiwi

〉, and the location profile is now x =
〈x1, . . . ,xn〉.

A deterministic mechanism in the multiple locations set-
ting is a function f : Rw1 × · · ·Rwn → R, which locates a
single facility given the multiple locations reported by each
agent. As in Section 2, a randomized mechanism returns a
probability distribution over R.

As before, we will be interested in minimizing the social
cost or the maximum cost, but now the cost of an agent
depends on the objective function. If the objective func-
tion is minimizing the social cost, given a facility location
y, the cost of an agent is the sum of distances to its lo-
cations: cost(y,xi) = sc(y,xi) =

∑wi

j=1
|y − xij |. If the

goal is minimizing the maximum cost, then the cost of an
agent is the maximum distance to its locations: cost(y,xi) =
mc(y,xi) = maxj∈{1,...,wi} |y − xij |.

The same goes for randomized mechanisms, with respect
to expected costs. Notice that, when the individual costs
are defined as above, optimizing the social cost is in fact
equivalent to minimizing the sum of distances to all the lo-
cations controlled by all the agents, that is, choosing y that
minimizes

∑

i∈N

∑

j∈{1,...,wi}
|y−xij |. Optimizing the max-

imum cost implies minimizing the maximum distance with
respect to all the locations controlled by all the agents, i.e.,
minimizing maxi∈N maxj∈{1,...,wi} |y − xij |.

4.1 Social Cost
As in Section 3, when moving from the basic setting to this

more elaborate setting, optimization of the social cost is no
longer strategyproof. To see this, consider a simple example
with two agents. Let x1 = 〈0, 1, 1〉 and x2 = 〈0, 0〉. The
optimal solution is the median of all the locations, which is
0; we have that cost(0,x1) = 2. However, by reporting x′

1 =
〈1, 1, 1〉, agent 1 can move the median of all the locations to
1; notice that cost(1,x1) = 1, hence agent 1 benefits from
misreporting its locations.

Deterministic Mechanisms. Dekel, Fischer and Procac-
cia [9] have in fact investigated our current setting (that is,
optimizing the social cost when each agent controls multiple
locations) with respect to deterministic mechanisms, in the
context of incentive compatible regression learning. Some
of their results (Section 4 of [9]) deal with a discrete set-
ting where one wishes to optimize the social cost under the
absolute loss function, when the function class is the class
of constant functions; it can be verified, although it is not
immediately obvious, that the two settings are equivalent.
Note that the results of Dekel et al. are stated under the
assumption that the agents all control the same number of
points, that is, wi = wj for all i, j ∈ N , but they also hold
when this is not the case.
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Dekel et al. designed a deterministic group strategyproof
3-approximation mechanism for the social cost in the mul-
tiple locations setting. Furthermore, they showed a match-
ing lower bound of 3 for deterministic strategyproof mech-
anisms. Interestingly, their lower bound holds even when
there are only two agents that control the same number of
locations.

Randomized Mechanisms. Dekel et al. [9] did not discuss
randomized mechanisms. We design a simple randomized
mechanism that succeeds in breaking the deterministic lower
bound given by Dekel et al. [9].

Mechanism 3. Given x, return med(xi) with probability
wi/(

∑

j∈N
wj).

This mechanism is strategyproof. Indeed, for each agent
i ∈ N , agent i has single peaked preferences with a peak at
med(xi). Consider a situation where i lies; if it is not se-
lected by the mechanism, the lie does not make a difference;
if i is selected, then it can only be worse off.

However, somewhat counterintuitively and in contrast to
the group strategyproof mechanism given by Dekel et al.,
Mechanism 3 is not group strategyproof; this is demon-
strated by following example.

Example 4.1 (Mechanism 3 is not GSP). Let N =
{1, 2}, and set x1 = 〈−3,−2, 1〉 and x2 = 〈−1, 2, 3〉. The
medians are med(x1) = −2, med(x2) = 2, and each is se-
lected by Mechanism 3 with probability 1/2. Hence, denot-
ing Mechanism 3 by f , we have that for both agents i ∈ N ,

cost(f(x),xi) =
1

2
· (1 + 3) +

1

2
· (1 + 4 + 5) = 7 .

On the other hand, consider the location profile x′ where
both agents report all their locations to be at 0. Then
f(x′) selects 0 with probability one. Hence, for all i ∈ N ,
cost(xi, f(x′)) = 6. This means that both agents strictly
benefit from the deviation from x to x′.

We now turn to establishing the approximation guarantees
provided by Mechanism 3.

Theorem 4.2. Mechanism 3 is a strategyproof mechanism
in the multiple locations setting. Moreover, if n = 2, the

mechanism yields an approximation ratio of 2 + |w1−w2|
w1+w2

for
the social cost.

In particular, the theorem implies that Mechanism 3 gives
a 2-approximation when there are two agents that control
the same number of points, which is a setting where the de-
terministic lower bound of 3 (given in [9]) holds. The proof
of the theorem is relegated to the full version of the pa-
per [27]. Extending the theorem beyond two agents remains
an open problem.

We now construct an example that serves two purposes.
First, the example shows that Mechanism 3 does not pro-
vide an approximation ratio better than 3− 2/n when there
are n agents, even when the agents control the same num-
ber of locations, and thus does not significantly beat the
deterministic lower bound of 3 when the number of agents
is large. Second, the example demonstrates the tightness of
the upper bound given in Theorem 4.2, that is, when there
are two agents with w1 and w2 points, the mechanism does

not obtain an approximation ratio better than 2 + |w1−w2|
w1+w2

.

Example 4.3 (Lower bounds for Mechanism 3).
We first establish that, when N = {1, . . . , n}, given ǫ > 0
there is w ∈ N large enough such that even when each agent
controls exactly w locations, the approximation ratio given
by Mechanism 3 is at least 3 − 2

n
− ǫ.

Let w = 2k + 1, where k is to be chosen later. Con-
struct a location profile x as follows. For agent 1, we have
x1, . . . , xk+1 = 0, and xk+2, . . . , x2k+1 = 1. For all j 6= i and
all l = 1, . . . , w, xjl = 1. Notice that med(x1) = 0. With
probability 1/n the algorithm returns 0, and has a social
cost of (n − 1)(2k + 1) + k. With probability (n − 1)/n the
algorithm selects 1 and has a social cost of k + 1. The ratio
is

1

n
· ((n − 1)(2k + 1) + k) + n−1

n
· (k + 1)

k + 1
= 3−

2

n
−

1

k + 1
.

To prove the claim, choose k > 1/ǫ − 1.
Interestingly, the same example also shows a lower bound

of 2+ |w1−w2|
w1+w2

− ǫ in the setting of Theorem 4.2, by choosing

w1 = 2k + 1, w2 = (n− 1)(2k + 1). The analysis is as above
with respect to agent 1, whereas agent 2 replaces agents
2, . . . , n above. In this case,

2 +
|w1 − w2|

w1 + w2

= 2 +
n − 2

n
= 3 −

2

n
.

4.2 Maximum Cost
Our last object of interest is mechanisms for minimizing

the maximum cost, in the setting where each agent i ∈ N
controls wi locations. Similarly to Section 3, we shall demon-
strate that the results of Section 2 can be leveraged to obtain
tight or nearly tight results in the current setting.

A crucial observation is that, given an agent i ∈ N , its
location profile xi ∈ Rwi , and a facility location y ∈ R,

mc(y,xi) = |y − cen(xi)| +
rt(xi) − lt(xi)

2
. (1)

Hence, when cost(y,xi) = mc(y,xi), the preferences of the
agents are single peaked with the peak at cen(xi), and, more-
over, their utility depends only on the distance |y−cen(xi)|.

Deterministic Mechanisms. In previous settings we have
seen that it is straightforward to obtain a deterministic strat-
egyproof 2-approximation mechanism for the maximum cost.
The reason (implicitly underlying the result of Section 3) was
that returning any location between lt(x) and rt(x) yields a
2-approximation. The same logic also delivers in our current
setting.

Given x ∈ Rw1 × · · · × Rwn , we define the vector

multicen(x) = 〈cen(x1), . . . , cen(xn)〉 .

This is the vector of the centers of the agents’ location pro-
files, or, in other words, the vector of the peaks of the
agents’ preferences. Hence, choosing the leftmost center,
lt(multicen(x)), is a group strategyproof solution. More-
over, we have that

lt(x) ≤ lt(multicen(x)) ≤ rt(x) ,

so

mc(lt(multicen(x),x) ≤ rt(x) − lt(x) ,

whereas the optimal solution has a maximum cost of at least
(rt(x) − lt(x))/2. We have proved:
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Objective Function Deterministic Randomized

Social Cost
UB: 3 GSP (Dekel et al. [9])
LB: 3 SP (Dekel et al. [9])

UB: 2 +
|w1−w2|
w1+w2

SP (n = 2, Thm 4.2)

LB: N/A

Maximum Cost
UB: 2 GSP (Thm 4.4)
LB: 2 SP (Thm 2.2)

UB: 3/2 GSP (Thm 4.5)
LB: 3/2 SP (Thm 2.4)

Table 3: A summary of the results of Section 4. UB and LB stand for upper bound and lower bound,

respectively. SP and GSP stand for strategyproof and group strategyproof, respectively.

Theorem 4.4. f(x) = lt(multicen(x)) is a group strate-
gyproof 2-approximation mechanism for the maximum cost
in the multiple location setting.

Since in the current setting we can have that wi = 1 for
all i ∈ N , any lower bound from Section 2 holds here as well.
In particular, Theorem 2.2 provides a tight lower bound of
2.

Randomized Mechanisms. In order to obtain random-
ized mechanisms for the maximum cost in the multiple lo-
cation setting we once again leverage the techniques of Sec-
tion 2. Consider the following Mechanism.

Mechanism 4. Given x ∈ Rw1×· · ·Rwn , return the point
lt(multicen(x)) with probability 1/4, rt(multicen(x)) with prob-
ability 1/4, and

cen(multicen(x)) = (lt(multicen(x)) + rt(multicen(x)))/2

with probability 1/2.

The following theorem establishes that the mechanism has
some very desirable properties.

Theorem 4.5. Mechanism 4 is a group strategyproof 3/2-
approximation mechanism for the maximum cost in the mul-
tiple location setting.

Proof. It can easily be verified that, using (1), the group
strategyproofness of the mechanism follows from exactly the
same arguments as in the proof of Theorem 2.3. Therefore,
we concentrate on establishing the announced approxima-
tion ratio.

Let x ∈ Rn. Without loss of generality (by scaling the
distances) we assume that lt(x) = 0, rt(x) = 1. We first
claim that lt(multicen(x)) ≤ 1/2. Indeed, let i ∈ N be the
agent that controls 0. Then lt(xi) = 0, rt(xi) ≤ 1, hence
cen(xi) ≤ 1/2. The claim directly follows. Similarly, we
have that rt(multicen(x)) ≥ 1/2. In other words, it holds
that lt(multicen(x)) is at least as close to 0 as to 1, whereas
rt(multicen(x)) is at least as close to 1 as to 0. Therefore,
denoting Mechanism 4 by f , we have:

mc(f(x),x) =
1

4
· (1 − lt(multicen(x))) +

1

4
· rt(multicen(x))

+
1

2
· max

{

lt(multicen(x)) + rt(multicen(x))

2
,

1 −
lt(multicen(x)) + rt(multicen(x))

2

}

= max

{

1

4
+

rt(multicen(x))

2
,

3

4
−

lt(multicen(x))

2

}

≤
3

4
,

where the last inequality follows from lt(multicen(x)) ≥ 0
and rt(multicen(x)) ≤ 1. The optimal solution has a cost of
1/2. Therefore, we get an approximation ratio of 3/2.

Finally, we remark that the randomized lower bound of
3/2 given by Theorem 2.4 holds here as well. We find it quite
surprising that the upper bound yielded by the seemingly
“generous” Mechanism 4 is tight.

4.3 Discussion
Table 3 summarizes the results of Section 4. The most

interesting open question is how the analysis of Mechanism 3
extends to n > 2. We conjecture that for any number of
agents n, if wi = wj for all i, j ∈ N , then the mechanism
yields an approximation ratio of 3−2/n. Such a result would
be tight by Example 4.3. Moreover, we have no general lower
bound that works for randomized mechanisms for the social
cost.

The setting investigated in this section has many applica-
tions, but we note that, in particular, any results about ran-
domized strategyproof mechanisms for the social cost can
be directly applied in the incentive compatible regression
learning setting of Dekel et al. [9].

5. OPEN PROBLEMS AND FURTHER DIS-
CUSSION

We believe we have just scratched the surface with respect
to approximate mechanism design without money. First,
there are many interesting open problems and conjectures
that are directly related to the domains investigated above;
these problems are summarized in Sections 3.3 and 4.3.

Second, there are several additional, very natural, exten-
sions of the setting of Section 2 that we have not considered
above. One example is looking at domains where the space
of locations is more involved, either multi-dimensional Eu-
clidean space, or settings where agents have single peaked
preferences over graphs [30]. Another example is considering
allotment rules, namely rules that assign a point ai ∈ [0, 1]
to each agent, such that

∑

i∈N
ai = 1; this setting mod-

els the division of a task or a good among the agents [5,
Section 4.1]. Furthermore, it is possible to consider almost
any combination of the extensions, e.g., a domain in which
agents control multiple locations (as in Section 4) and two
facilities must be located (as in Section 3).

Third, in the long run our intention is to apply the ideas
discussed in this paper to completely different domains. We
have several examples in mind, but here we outline just one.
Consider a directed graph where the vertices are agents, and
an edge from agent i to agent j means that i recommends
j, trusts j, or “votes” for j in some sense. The score of an
agent is its indegree in the graph. The mechanism receives
the graph as input, and outputs a set of k agents. This
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model can be interpreted in the context of social networks,
recommendation systems, etc. An agent’s strategy is its set
of outgoing edges, and its utility is one if it is among the
selected agents and zero if not; the objective function is the
total score of the selected agents. In ongoing work with
colleagues, we have designed some strategyproof approxi-
mation mechanisms with a constant approximation ratio for
this problem.
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Tardos, and V. Vazirani, editors, Algorithmic Game
Theory, chapter 10. Cambridge University Press, 2007.

[32] Y. Sprumont. Strategyproof collective choice in
economic and political environments. The Canadian
Journal of Economics, 28(1):68–107, 1995.

186


