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Abstract. We introduce a model to study the temporal behaviour of
selfish agents in networks. So far, most of the analysis of selfish routing
is concerned with static properties of equilibria which is one of the most
fundamental paradigms in classical Game Theory. By adopting a gener-
alised approach of Evolutionary Game Theory we extend the model of
selfish routing to study the dynamical behaviour of agents.
For symmetric games corresponding to singlecommodity flow, we show
that the game converges to a Nash equilibrium in a restricted strategy
space. In particular we prove that the time for the agents to reach an
ε-approximate equilibrium is polynomial in ε and only logarithmic in the
ratio between maximal and optimal latency. In addition, we present an
almost matching lower bound in the same parameters.
Furthermore, we extend the model to asymmetric games corresponding
to multicommodity flow. Here we also prove convergence to restricted
Nash equilibria, and we derive upper bounds for the convergence time
that are linear instead of logarithmic.

1 Introduction

Presently, the application of Game Theory to networks and congestion games is
gaining a growing amount of interest in Theoretical Computer Science. One of the
most fundamental paradigms of Game Theory is the notion of Nash equilibria.
So far, many results on equilibria have been derived. Most of these are concerned
with the ratio between average cost at an equilibrium and the social optimum,
mostly referred to as the coordination ratio or the price of anarchy [2, 7, 8, 13],
ways to improve this ratio, e. g. by taxes [1], and algorithmic complexity and
efficiency of computing such equilibria [3–5].

Classical Game Theory is based on fully rational behaviour of players and
global knowledge of all details of the game under study. For routing games in
large networks like the Internet, these assumptions are clearly far away from
being realistic. Evolutionary Game Theory makes a different attempt to explain
why large populations of agents may or may not “converge” towards equilibrium
states. This theory is mainly based on the so-called replicator dynamics, a model
of an evolutionary process in which agents revise their strategies from time to
time based on local observations.
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In this paper, we apply Evolutionary Game Theory to selfish routing. This
enables us to study the dynamics of selfish routing rather than only the static
structure of equilibria. We prove that the only existing fixed points of the repli-
cator dynamics are Nash equilibria over a restricted strategy space. We prove
that these fixed points are “evolutionary stable” which implies that the replica-
tor dynamics converges to one of them. One standard approach in Evolutionary
Game Theory to prove stability is based on symmetry properties of payoff matri-
ces. However, we cannot simply cast these results as our model of selfish routing
allows for arbitrary latency functions whereas the existing literature on Evolu-
tionary Game Theory assumes affine payoff functions corresponding to linear
latency functions with zero offset. In fact our proof of evolutionary stability is
based on monotonicity instead of symmetry.

Another aspect that – to our knowledge – has neither been considered in
Evolutionary nor in classical Game Theory is the time it takes to reach or come
close to equilibria – the speed of convergence. We believe that this is an issue
of particular importance as equilibria are only meaningful if they are reached in
reasonable time. In fact we can prove that symmetric congestion games – cor-
responding to singlecommodity flow – converge very quickly to an approximate
equilibrium. For asymmetric congestion games our bounds are slightly weaker.

The well established models of selfish routing and Evolutionary Game Theory
are described in Section 2. In Section 3 we show how a generalisation of the
latter can be applied to the first. In Section 4 we present our results on the
speed of convergence. All proofs are collected in Section 5. We finish with some
conclusions and open problems.

2 Known Models

2.1 Selfish Routing

Consider a network G = (V, E) and for all e ∈ E, latency functions le : [0, 1] �→ R

assigned to the edges mapping load to latency, and a set of commodities I. For
commodity i ∈ I there is a fixed flow demand of di that is to be routed from
source si to sink ti. The total flow demand of all commodities is 1. Denote the
set of si-ti-paths by Pi ⊆ P(E), where P(E) is the power set of E. For simplicity
of notation we assume that the Pi are disjoint, which is certainly true if the pairs
(si, ti) are pairwise distinct. Then there is a unique commodity i(p) associated
with each path p ∈ P . Let furthermore P =

⋃
i∈I Pi.

For p ∈ P denote the amount of flow routed over path p by xp. We combine
the individual values xp into a vector x. The set of legal flows is the simplex1

Δ := {x|∀i ∈ I :
∑

p∈Pi
xp = di}. Furthermore, for e ∈ E, xe :=

∑
p�e xp is the

total load of edge e. The latency of edge e ∈ E is le(xe) and the latency of path
p is

lp(x) =
∑
e∈p

le(xe).

1 Strictly speaking, Δ is not a simplex, but a product of |I| simplices scaled by di.



The average latency with respect to commodity i ∈ I is

l̄i(x) = d−1
i

∑
p∈Pi

xplp(x).

In a more general setting one could abstract from graphs and consider arbitrary
sets of resources E and arbitrary non-empty subsets of E as legal strategies. We
do not do this for simplicity, though it should be clear that all our considerations
below also hold for the general case.

In order to study the behaviour of users in networks, one assumes that there
are an infinite number of agents carrying an infinitesimal amount of flow each. In
this context the flow vector x can also be seen as a population of agents where
xp is the non-integral “number” of agents selecting strategy p.

The individual agents strive to choose a path that minimises their personal
latency regardless of social benefit. This does not impute maliciousness to the
agents, but simply arises from the lack of a possibility to coordinate strategies.
One can ask: What population will arise if we assume complete rationality and
if all agents have full knowledge about the network and the latency functions?

This is where the notion of an equilibrium comes into play. A flow or popu-
lation x, is said to be at Nash equilibrium [11], when no agent has an incentive
to change their strategy. The classical existence result by Nash holds if mixed
strategies are allowed, i. e., agents may choose their strategy by a random dis-
tribution. However, mixed strategies and an infinite population of agents using
pure strategies are basically the same. A very useful characterisation of a Nash
equilibrium is the Wardrop equilibrium [6].

Definition 1 (Wardrop equilibrium). A flow x is at Wardrop equilibrium if
and only if for all i ∈ I and all p, p′ ∈ Pi with xp > 0 it holds that lp(x) ≤ lp′(x).

Several interesting static aspects of equilibria have been studied, among them
the famous price of anarchy, which is the ratio between average latency at a
Nash equilibrium and optimal average latency.

2.2 Evolutionary Game Theory

Classical Game Theory assumes that all agents – equipped with complete knowl-
edge about the game and full rationality – will come to a Wardrop equilib-
rium. However, these assumptions seem far from realistic when it comes to net-
works. Evolutionary Game Theory gets rid of these assumptions by modelling
the agents’ behaviour in a very natural way that requires the agents simply to
observe their own and other agents’ payoff and strategy and change their own
strategies based on these observations. Starting with an initial population vector
x(0) – as a function of time – one is interested in its derivative with respect to
time ẋ.

Originally, Evolutionary Game Theory derives dynamics for large populations
of individuals from symmetric two-player games. Any two-player game can be
described by a matrix A = (aij) where aij is the payoff of strategy i when played



against strategy j. Suppose that two individuals are drawn at random from a
large population to play a game described by the payoff matrix A. Let xi denote
the fraction of players playing strategy i at some given point of time. Then the
expected payoff of an agent playing strategy i against the opponent randomly
chosen from population x is the ith component of the matrix product (Ax)i.
The average payoff of the entire population is x · Ax, where · is the inner, or
scalar, product.

Consider an initial population in which each agent is assigned a pure strategy.
At each point of time, each agent plays against an opponent chosen uniformly
at random. The agent observes its own and its opponents payoff and decides to
imitate its opponent by adopting its strategy with probability proportional to
the payoff difference. One could argue that often it is not possible to observe
the opponent’s payoff. In that case, consider a random aspiration level for each
agent. Whenever an agent falls short of this level, it adopts a randomly observed
strategy. Interestingly, both scenarios lead to a dynamics which can be described
by the differential equation

ẋi = λ(x) · xi · ((Ax)i − xAx) (1)

for some positive function λ. This equation has interesting and desirable prop-
erties. First, the growth rate of strategy i should clearly be proportional to
the number of agents already playing this strategy, if we assume homogeneous
agents. Then we have ẋi = xi · gi(x). Secondly, the growth rate gi(x) should
increase with payoff, i. e., (Ax)i > (Ax)j should imply gi(x) > gj(x) and vice
versa. Dynamics having this property are called monotone. In order to extend
this, we say that g is aggregate monotone if for inhomogeneous (sub)populations
the total growth rate of the subpopulations increases with the average payoff of
the subpopulation, i. e., for vectors y, z ∈ Δ it holds that y ·Ax < z ·Ax if and
only if y · g(x) < z · g(x). It is known that all aggregate monotone dynamics
can be written in the form of equation (1). In Evolutionary Game Theory the
most common choice for λ seems to be the constant function 1. For λ(x) = 1,
this dynamics is known as the replicator dynamics.

Since the differential equation (1) contains cubic terms there is no general
method for solving it. It is found that under some reasonable conditions fixed
points of this dynamics coincide with Nash equilibria. For a more comprehensive
introduction into Evolutionary Game Theory see for example [14].

3 Evolutionary Selfish Flow

We extend the dynamics known from Evolutionary Game Theory to our model of
selfish routing. We will see that there is a natural generalisation of equation (1)
for our scenario.

3.1 Dynamics for Selfish Routing

First consider symmetric games corresponding to singlecommodity flow. In con-
gestion games latency relates to payoff, but with opposite sign. Unless we have



linear latency functions without offset, we cannot express the payoff by means
of a matrix A. Therefore we replace the term (Ax)i by the latency li(x). The
average payoff x ·Ax is replaced by the average latency l̄(x). Altogether we have

ẋp = λ(x) · xp · (l̄(x) − lp(x)). (2)

Evolutionary Game Theory also allows for asymmetric games, i. e., games where
each agent belongs to one class determining the set of legal strategies. In princi-
ple, asymmetric games correspond to multicommodity flow. The suggested gen-
eralisations for asymmetric games, however, are not particularly useful in our
context since they assume that agents of the same class do not play against each
other. We suggest a simple and natural generalisation towards multicommodity
flow. Agents behave exactly as in the singlecommodity case but they compare
their own latency to the average latency over the agents in the same class. Al-
though in Evolutionary Game Theory λ = 1 seems to be the most common
choice even for asymmetric games, we suggest to choose the factor λ dependent
on the commodity. We will later see why this might be useful. This gives the
following variant of the replicator dynamics:

ẋp = λi(p)(x) · xp · (l̄i(p)(x) − lp(x)). (3)

We believe that this, in fact, is a realistic model of communication in networks
since agents only need to “communicate” with agents having the same source
and destination nodes.

In order for equation (3) to constitute a legal dynamics, we must ensure that
for all t the population shares sum up to the total flow demand.

Proposition 1. Let x(t) be a solution of equation (3). Then x(t) ∈ Δ for all t.

This is proved in Section 5. Note that strategies that are not present in the initial
population are not generated by the dynamics. Conversely, positive strategies
never get completely extinct.

3.2 Stability and Convergence

Maynard Smith and Price [9] introduced the concept of evolutionary stability
which is stricter than the concept of a Nash equilibrium. Intuitively, a strategy is
evolutionary stable if it is at a Nash equilibrium and earns more against a mutant
strategy than the mutant strategy earns against itself. Adopted to selfish routing
we can define it in the following way.

Definition 2 (evolutionary stable). A strategy x is evolutionary stable if it
is at a Nash equilibrium and x · l(y) < y · l(y) for all best replies y to x.

A strategy y is a best reply to strategy x if no other strategy yields a better
payoff when played against x.

Proposition 2. Suppose that latency functions are strictly increasing. If x is
at a Wardrop equilibrium, then x · l(y) < y · l(y) for all y (especially, for all
best replies) and hence x is evolutionary stable.



Consider a Wardrop equilibrium x and a population y such that for some strat-
egy p ∈ P , yp = 0 and xp > 0. The replicator dynamics starting at y does
not converge to x since it ignores strategy p. Therefore we consider a restricted
strategy space P ′ containing only the paths with positive value and restricted
Wardrop equilibria over this restricted strategy space.

Proposition 3. Suppose that for all i, j ∈ I, λi = λj and λi(x) ≥ ε for some
ε > 0 and any x ∈ Δ. Let y(t) be a solution to the replicator dynamics (3) and
let x be a restricted Wardrop equilibrium with respect to y(0). Then y converges
towards x, i. e., limt→∞ ||y(t) − x|| = 0.

Both propositions are proved in Section 5.

4 Speed of Convergence

In order to study the speed of convergence we suggest two modifications to
the standard approach of Evolutionary Game Theory. First, one must ensure
that the growth rate of the population shares does not depend on the scale
by which we measure latency, as is the case if we choose λ(x) = 1 or any
other constant. Therefore we suggest to choose λi(x) = l̄i(x)−1. This choice
arises quite naturally if we assume that the probability of agents changing their
strategy depends on their relative latency with respect to the current average
latency. We call the resulting dynamics the relative replicator dynamics.

Secondly, the Euclidian distance ||y − x|| is not a suitable measure for ap-
proximation. Since “sleeping minorities on cheap paths” may grow arbitrarily
slowly, it may take arbitrarily long for the current population to come close to
the final Nash equilibrium in Euclidian distance. The idea behind our definition
of approximate equilibria is not to wait for these sleeping minorities.

Definition 3 (ε-approximate equilibrium). Let Pε be the set of paths that
have latency at least (1 + ε) · l̄, i. e., Pε = {p ∈ P |lp(x) ≥ (1 + ε) · l̄} and let
xε :=

∑
p∈Pε

xp be the number of agents using these paths. A population x is
said to be at an ε-approximate equilibrium if and only if xε ≤ ε.

Note that, by our considerations above, ε-approximate equilibria can be left
again, when minorities start to grow.

We will give our bounds in terms of maximal and optimal latency. Denote
the maximum latency by lmax := maxp∈P lp(ep) where ep is the unit vector for
path p. Let l∗ := minx∈Δ l̄(x) be the average latency at a social optimum.

Theorem 1. The replicator dynamics for general singlecommodity flow net-
works and non-decreasing latency functions converges to an ε-approximate equi-
librium within time O(ε−3 · ln(lmax/l∗)).

This theorem is robust. The proof does not require that agents behave exactly
as described by the replicator dynamics. It is only necessary that a constant
fraction of the agents that are by a factor of (1 + ε) above the average move to
a better strategy. We can also show that our bound is in the right ballpark.



Theorem 2. For any r := lmax/l∗ there exists a network and boundary condi-
tions such that the time to reach an ε-approximate equilibrium is bounded from
below by Ω(ε−1 ln r).

For the multicommodity case, we can only derive a linear upper bound. If we
define Pε := {p|lp ≥ (1 + ε) · l̄i(p)} then the definition of xε and Definition 3
translate naturally to the multicommodity case. Let l∗i = minx∈Δ l̄i(x) be the
minimal average latency for commodity i ∈ I and let l∗ = mini∈I l∗i .

Theorem 3. The multicommodity replicator dynamics converges to an ε-ap-
proximate equilibrium within time O(ε−3 · lmax/l∗).

Our analysis of convergence in terms of ε-approximate equilibria uses Rosenthal’s
potential function [12]. However, this function is not suitable for the proof of
convergence in terms of the Euclidian distance since it does not give a general
upper bound. Here we use the entropy as a potential function, which in turn is
not suitable for ε-approximations. Because of our choice of the λi in this section,
Proposition 3 cannot be translated directly to the multicommodity case.

5 Proofs

First we prove that the relative replicator dynamics is a legal dynamics in the
context of selfish routing, i. e., it does not leave the simplex Δ.

Proof (of Proposition 1). We show that for all commodities i ∈ I the derivatives
ẋp, p ∈ Pi sum up to 0.

∑
p∈Pi

ẋp = λi(x)

⎛
⎝∑

p∈Pi

xp l̄i(x) −
∑
p∈Pi

xplp(x)

⎞
⎠

= λi(x)

⎛
⎝l̄i(x)

∑
p∈Pi

xp − di · d−1
i

∑
p∈Pi

xplp(x)

⎞
⎠

= λi(x)
(
l̄i(x) · di − di · l̄i(x)

)
= 0.

Therefore,
∑

p∈Pi
xp = di is constant. 	


Now we prove evolutionary stability.

Proof (of Proposition 2). Let x be a Nash equilibrium. We want to show that
x is evolutionary stable. In a Wardrop equilibrium all latencies of used paths
belonging to the same commodity are equal. The latency of unused paths is
equal or even greater than the latency of used paths. Therefore x · l(x) ≤ y · l(x)
for all populations y. As a consequence,

y · l(y) ≥ x · l(x) + y · l(y) − y · l(x)

= x · l(x) +
∑
p∈P

yp(lp(y) − lp(x))

= x · l(x) +
∑
e∈E

ye(le(y) − le(x)).



Consider an edge e ∈ E. There are three cases.

1. ye > xe. Because of strict monotonicity of le, it holds that le(y) > le(x).
Therefore also ye(le(y) − le(x)) > xe(le(y) − le(x)).

2. ye < xe. Because of strict monotonicity of le, it holds that le(y) < le(x).
Again, ye(le(y) − le(x)) > xe(le(y) − le(x)).

3. ye = xe. In that case ye(le(y) − le(x)) = xe(le(y) − le(x)).

There is at least one edge e ∈ E with xe �= ye and, therefore, ye(le(y)− le(x)) >
xe(le(y) − le(x)). Altogether we have

y · l(y) > x · l(x) +
∑
e∈E

xe(le(y) − le(x)) = x · l(y)

which is our claim. Note that this proof immediately covers the multicommodity
case. 	

Proof (of Proposition 3). Denote the Nash equilibrium by x and the current
population by y. We define a potential function Hx by the entropy

Hx(y) :=
∑
p∈P

xp ln
xp

yp
.

From information theory it is known that this function always exceeds the
square of the Euclidean distance ||x − y||2. We can also write this as Hx(y) =∑

p∈P (xp ln(xp) − xp ln(yp)). Using the chain rule we calculate the derivative
with respect to time:

Ḣx(y) = −
∑
p∈P

xpẏp
1
yp

.

Now we substitute the replicator dynamics for ẏp, cancelling out the yp.

Ḣx(y) = λ(y)
∑
i∈I

∑
p∈Pi

xp(lp(y) − l̄i(y))

= λ(y)
∑
i∈I

⎛
⎝∑

p∈Pi

xplp(y) − l̄i(y) · di

⎞
⎠

= λ(y)
∑
i∈I

⎛
⎝∑

p∈Pi

xplp(y) −
⎛
⎝d−1

i

∑
p∈Pi

yplp(y)

⎞
⎠ · di

⎞
⎠

= λ(y)
∑
i∈I

∑
p∈Pi

(xp − yp) · lp(y)

= λ(y) · (x − y) · l(y).

Since x is a Wardrop equilibrium, Proposition 2 implies that (x− y) · l(y) < 0.
Furthermore, by our assumption λ(x) ≥ ε > 0. Altogether this implies that
Hx(y), and therefore also ||x − y||2 decreases towards the lower bound of Hx,
which is 0. 	




We will now proof the bound on the time of convergence in the symmetric case.

Proof (of Theorem 1). For our proof we will use a generalisation of Rosenthal’s
potential function [12]. In the discrete case, this potential function inserts the
agents sequentially into the network and sums up the latencies they experience
at the point of time they are inserted. In the continuous case this sum can be
generalised to an integral. As a technical trick, we furthermore add the average
latency at a social optimum l∗:

Φ(x) :=

(∑
e∈E

∫ xe

0

le(x) dx

)
+ l∗. (4)

Now we calculate the derivative with respect to time of this potential Φ. Let Le

be an antiderivative of le.

Φ̇ =
∑
e∈E

L̇e(xe) =
∑
e∈E

ẋe · le(xe) =
∑
e∈E

∑
p�e

ẋp · le(xe).

Now we substitute the replicator dynamics (2) into this equation and obtain

Φ̇ =
∑
e∈E

∑
p�e

(λ(x) · xp · (l̄(x) − lp(x))) · le(xe)

= λ(x)
∑
p∈P

∑
e∈p

xp · (l̄(x) − lp(x)) · le(xe)

= λ(x)
∑
p∈P

xp · (l̄(x) − lp(x)) · lp(x)

= λ(x)

⎛
⎝l̄(x)

∑
p∈P

xplp(x) −
∑
p∈P

xplp(x)2

⎞
⎠

= λ(x)

⎛
⎝l̄(x)2 −

∑
p∈P

xplp(x)2

⎞
⎠ . (5)

By Jensen’s inequality this difference is negative.
As long as we are not at an ε-approximate equilibrium, there must be a

population share of magnitude at least ε with latency at least (1 + ε) · l̄(x). For
fixed l̄(x) the term

∑
p∈P xplp(x)2 is minimal when the less expensive paths all

have equal latency l′. This follows from Jensen’s inequality as well. We have
l̄ = ε · (1 + ε) · l̄ + (1 − ε) · l′ and

l′ = l̄ · 1 − ε − ε2

1 − ε
. (6)

According to equation (5) we have

Φ̇ = λ(x) · (l̄(x)2 − (ε · ((1 + ε) · l̄(x))2 + (1 − ε) · l′2)). (7)



Substituting (6) into (7) and doing some arithmetics we get

Φ̇ = −λ(x)
ε3

1 − ε
l̄(x)2

≤ −λ(x) · ε3 · l̄(x)2/2 = −ε3 · l̄(x)/2. (8)

We can bound l̄ from below by Φ/2:

l̄(x) =
∑
p∈P

xplp(x) =
∑
p∈P

∑
e∈p

xple(xe)

=
∑
e∈E

∑
p�e

xple(xe) =
∑
e∈E

xele(xe)

≥
∑
e∈E

∫ xe

0

le(x) dx (9)

The inequality holds because of monotonicity of the latency functions. By defi-
nition of l∗, also l̄ ≥ l∗. Altogether we have l̄ + l̄ ≥ l∗ +

∑
e∈E

∫ xe

0
le(x) dx, or

l̄ ≥ Φ/2. Substituting this into inequality (8) we get the differential inequality

Φ̇ ≤ −ε3Φ/4

which can be solved by standard methods. It is solved by any function

Φ(t) ≤ Φinite
−ε3/4·t.

where Φinit = Φ(0) is given by the boundary conditions. This does only hold
as long as we are not at a ε-approximate equilibrium. Hence, we must reach a
ε-approximate equilibrium at the latest when Φ falls below its minimum Φ∗. We
find that the smallest t fulfilling Φ(t) ≤ Φ∗ is

t = 4ε−3 ln
Φinit

Φ∗ .

Clearly, Φ∗ ≥ l∗ and Φinit ≤ 2 · lmax which establishes our assertion. 	

Where is this proof pessimistic? There are only two estimates. We will give an
example where these inequalities almost hold with equality.

1. Inequality (9) holds with equality if we use constant latency functions.
2. The considerations leading to equation (7) are pessimistic in that they as-

sume that there are always very few agents in xε and that they are always
close to l̄.

Starting from these observations we can construct a network in which we can
prove our lower bound.

Proof (of Theorem 2, Sketch). Our construction is by induction. Consider a
network with m parallel links numbered 0 through m − 1. We show that the
time of convergence for m links is at least (m − 1) · Ω(ε−1).



For i ∈ {1 . . . , m} define the (constant) latency functions li(x) = (1+cε)−i+1,
c a constant large enough. Initially, some agents are on the most expensive link
1, very few agents are on links 3, . . . , m, and the majority is on link 2. More
precisely, x1(0) = 2ε, x2(0) = 1 − 2ε − γ, and

∑m
i=3 xi(0) = γ, where γ is some

small constant. In the induction step we will define the values of the xi(0) for
i > 2. Initially, assume γ = 0.

First consider the case where m = 2. Clearly, the average latency l̄ is dom-
inated by link 2, i. e., l1 is by a factor of at least (1 + ε) more expensive than
l̄. This implies that we cannot be at an ε-approximate equilibrium as long as
x1(t) > ε. Since link 1 is by a factor of Θ(1 + ε) more expensive than l̄ we have
ẋ1 = −Θ(ε2) and it takes time Ω(ε−1) for x1 to decrease from 2ε to ε.

Now consider a network with m > 2 edges. By induction hypothesis we know
that it takes time tm = (m− 2) ·Ω(ε−1) for the agents to shift their load to link
m − 1. We carefully select xm(0) such that it fulfils the following conditions:

– For t < tm the population share on link m does not lower l̄ significantly such
that our assumptions on the growth rates still hold.

– For t = tm, xm(t) exceeds a threshold such that l̄ decreases below lm−1(1+ε).

Although we do not calculate it, there surely exists a boundary condition for
xm(0) having these properties. Because of the second condition, the system ex-
actly fails to enter an ε-approximate equilibrium at time tm. Because of this, we
must wait another phase of length Ω(ε−1) for the agents on link m− 1 to switch
to link m. Note that there may be agents on link m− 2 and above. These move
faster towards cheaper links, but this does not affect our lower bound on the
agents on link m − 1.

We have lmax = 1 and l∗ = (1 + cε)−m+1. For arbitrary ratios r = lmax/l∗

we choose m = ln(r) yielding a lower bound of Ω(ε−1 ·m) = Ω(ε−1 · ln r) on the
time of convergence. 	

Proof (of Theorem 3). In the multicommodity case, equation (5) takes the form

Φ̇ =
∑
i∈I

λi(x)

⎛
⎝l̄2i −

∑
p∈Pi

xplp(x)2

⎞
⎠ .

Let i∗ = arg mini∈I l̄i. In the worst case, all agents in xε belong to commodity i∗

and equation (8) takes the form Φ̇ ≤ −ε−3l̄i∗/2. Then Theorem 3 follows directly
by the trivial estimate l̄i∗ > l∗. 	


6 Conclusions and Open Problems

We introduced the replicator dynamics as a model for the dynamic behaviour of
selfish agents in networks. For the symmetric case we have given an essentially
tight bound for the time of convergence of this dynamics that is polynomial in
the degree of approximation and logarithmic in network parameters. For the
multicommodity case, we derived an upper bound which is linear in the network



parameters. This model can also be used in the design of distributed load bal-
ancing algorithms, since one can reasonably assume that an algorithm based on
this model would be accepted by network users.

Several interesting problems remain open:

– The replicator dynamics is based on random experiments performed by
agents playing against each other. By this “fluid limit” we can ensure that
the outcomes of the experiments meet their expectation values. What hap-
pens if we go back to the discrete process?

– How can one improve the upper bound in the multicommodity scenario?
– There is a delay between the moment the agents observe load and latency

in the network and the moment they actually change their strategy. What
effects does the use of old information have? Similar questions are, e. g.,
studied in [10].

– A question of theoretical interest is: What is the convergence time for the
final Nash equilibrium?
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