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Abstract In view of the apparent intractability of constructing Nash Equilibria (NE
in short) in polynomial time, even for bimatrix games, understanding the limitations
of the approximability of the problem is an important challenge.

In this work we study the tractability of a notion of approximate equilibria in bi-
matrix games, called well supported approximate Nash Equilibria (SuppNE in short).
Roughly speaking, while the typical notion of approximate NE demands that each
player gets a payoff at least an additive term less than the best possible payoff, in a
SuppNE each player is assumed to adopt with positive probability only approximate
pure best responses to the opponent’s strategy.

As a first step, we demonstrate the existence of SuppNE with small supports and
at the same time good quality. This is a simple corollary of Althöfer’s Approximation
Lemma, and implies a subexponential time algorithm for constructing SuppNE of
arbitrary (constant) precision.

We then propose algorithms for constructing SuppNE in win lose and normalized
bimatrix games (i.e., whose payoff matrices take values from {0,1} and [0,1] re-
spectively). Our methodology for attacking the problem is based on the solvability of
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zero sum bimatrix games (via its connection to linear programming) and provides a
0.5-SuppNE for win lose games and a 0.667-SuppNE for normalized games.

To our knowledge, this paper provides the first polynomial time algorithms con-
structing ε-SuppNE for normalized or win lose bimatrix games, for any nontrivial
constant 0 ≤ ε < 1, bounded away from 1.

Keywords Bimatrix games · Well supported approximate Nash equilibria

1 Introduction

One of the most appealing concepts in game theory is the notion of a Nash equilib-
rium: A collection of strategies for the players from which no player has an incentive
to unilaterally deviate from her own strategy. The extremely nice thing about Nash
equilibria is that they always exist in any finite k-person game in normal form [24].
This is one of the most important reasons why Nash equilibria are considered to be
the prevailing solution concept for finite games in normal form. The problem is that
there can be exponentially many of them, of quite different characteristics, even for
bimatrix games. Additionally, we do not know yet how to construct them in subex-
ponential time. Therefore, k-NASH, the problem of computing an arbitrary Nash
equilibrium of a finite k-person game in normal form, is a fundamental problem in
algorithmic game theory and has been recognized as perhaps one of the most out-
standing problems at the boundary of P [27]. Its complexity has been a long standing
open problem, since the introduction of the pioneering (pivoting) algorithm of Lemke
and Howson [22]. Unfortunately, it was recently shown by Savani and von Stengel
[28] that this algorithm requires an exponential number of steps; moreover, it is also
known that the smoothed complexity of the algorithm is likely to be superpolyno-
mial [8]. It is also quite interesting that many (quite natural) refinements of k-NASH
are known to be NP-complete problems [10, 16].

A flurry of results in the last two years has proved that k-NASH is indeed complete
problem for the complexity class PPAD (introduced by Papadimitriou [26]), even for
four players [12], three players [11], and two players [7]. In particular, the result of
Chen and Deng [7], complemented by that of Abbott, Kane and Valiant [1], shows
that 2-NASH is PPAD-complete even for win lose bimatrix games.

Due to the apparent hardness even of 2-NASH, approximate solutions to Nash
equilibria have lately attracted the attention of the research community. There are
various notions of approximate Nash equilibria one can study. The most popular one
is that in which every player gets a payoff at most some (positive) constant ε less
than the maximum possible payoff, (denoted here by ε-ApproxNE). An alternative,
maybe less popular, but still quite interesting notion of Nash approximation, requires
that each player is allowed to adopt wpp1 only actions that are approximate best re-
sponses to the opponent’s strategy, within an additive term (or, precision) ε (denoted
here by ε-SuppNE). ApproxNE seem to be the dominant notion of approximate equi-
libria in the literature, while SuppNE is a rather new and stricter notion (e.g., see

1With positive probability.
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[8, 9, 13]). As it will be explained later, SuppNE seem to be harder to construct. On
the other hand they might be naturally motivated by the players’ selfish behavior:
Rather than demanding that a player adopts wpp only best responses against the op-
ponent’s strategy, we allow them to choose approximate best responses (within some
additive precision parameter). This is in contrast to the notion of ApproxNE, in which
the two players have no restriction in what kind of actions they choose to play wpp,
so long as their payoffs are close to their best response payoffs. We would like to
argue in this paper that SuppNE is a quite interesting notion of approximate Nash
equilibria, due to both its mathematical challenge and also its additional property that
the players are not allowed to adopt wpp actions that are indeed meaningless to them.

The present paper is a work trying to shed some light on this new notion of ap-
proximate equilibria. We provide a quite simple existence proof (as a simple corollary
of Althöfer’s Approximation Lemma [3]) of ε-SuppNE with arbitrary (constant) pre-
cision ε > 0, with logarithmic (in the numbers of players’ actions) support sizes. We
also provide (to our knowledge) the first polynomial time algorithms for the construc-
tion of SuppNE in normalized and win lose bimatrix games, for some constant that is
clearly away from the trivial bound of 1.

2 Preliminaries

2.1 Mathematical Notation

For any integer k ∈ N, let [k] ≡ {1,2, . . . , k}. We denote by M ∈ Fm×n any m ×
n matrix whose elements have values in some set F . We also denote by (A,B) ∈
(F × F)m×n any m × n matrix whose elements are ordered pairs of values from
F . Equivalently, this structure can be seen as an ordered pair of m × n matrices
A,B ∈ Fm×n. Such a pair of matrices is called a bimatrix. A k × 1 matrix is also
considered to be an k-vector. Vectors are denoted by bold small letters (e.g., x,y).
A vector having a 1 in the i-th position and 0 everywhere else is denoted by ei. We
denote by 1k (0k) the k-vector having 1s (0s) in all its coordinates. The k × k matrix
E = 1k · 1k

T ∈ {1}k×k has value 1 in all its elements. For a pair of vectors x,y ∈ R
n,

we denote the component–wise comparison by x ≥ y: ∀i ∈ [n], xi ≥ yi . Matrices are
denoted by capital letters (e.g., A,B,C, . . .), and bimatrices are denoted by ordered
pairs of capital letters (e.g., (A,B), (R,C), . . .). For any m × n (bi)matrix M , Mj

is its j -th column (as an m × 1 vector), Mi is the i-th row (as a (transposed) 1 × n

vector) and Mi,j is the (i, j)-th element. For any matrix A ∈ R
m×n, we denote by

Amax ≡ max(i,j)∈[m]×[n] Ai,j and Amin ≡ min(i,j)∈[m]×[n] Ai,j its maximum and its
minimum element, respectively.

For any integer k ≥ 1, we denote by �k ≡ {z ∈ R
k : z ≥ 0; (1k)T z = 1} the (k −

1)-simplex. For any point z ∈ �k , its support supp(z) is the set of coordinates with
positive value: supp(z) ≡ {i ∈ [k] : zi > 0}. For an arbitrary logical expression E , we
denote by P{E } the probability of this expression being true, while I{E } is the indicator
variable of whether this expression is true or false. For any random variable x, E{x}
is its expected value (with respect to some given probability measure).
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2.2 Game Theoretic Definitions and Notation

An m × n bimatrix game 〈A,B〉 is a 2-person game in normal form, that is de-
termined by the bimatrix (A,B) ∈ (R × R)m×n as follows: The first player (called
the row player) has an m-element action set [m], and the second player (called the
column player) has an n-element action set [n]. Each row (column) of the bimatrix
corresponds to a different action of the row (column) player. The row and the column
player’s payoffs are determined by the m × n real matrices A and B respectively.
In the special case that the payoff matrices have only rational entries, we refer to a
rational bimatrix game. If both payoff matrices belong to [0,1]m×n then we have a
[0,1]-bimatrix (aka normalized) game. When all elements of the bimatrix belong
to {0,1} × {0,1}, then we have a {0,1}-bimatrix (aka win lose) game. A win lose
game having (for some integer λ ≥ 1) at most λ (1,0)-elements per row and at most
λ number (0,1)-element per column of the bimatrix, is called λ-sparse. A bimatrix
game 〈A,B〉 is called zero sum, if it happens that B = −A. In that case the game
is solvable in polynomial time, since the two players’ optimization problems form
a primal–dual linear programming pair. In all cases of bimatrix games we assume
wlog2 that 2 ≤ m ≤ n.

Any probability distribution on the action set [m] of the row player, i.e., any point
x ∈ �m, is a mixed strategy for her. The row player then determines her action
independently from the column player, according to x. Similarly, any point y ∈ �n

is a mixed strategy for the column player. Each extreme point ei ∈ �m (ej ∈ �n)
that enforces the use of the i-th row (j -th column) by the row (column) player, is
called a pure strategy for her. Any element (x,y) ∈ �m ×�n is a (mixed in general)
strategy profile for the two players. We now define the notions of approximate (pure)
best responses, that will help us simplify the forthcoming definitions:

Definition 1 (Approximate Best Response) Fix arbitrary constant ε > 0. Given that
the column player adopts a strategy y ∈ �n and the payoff matrix of the row player
is A, the sets of ε-approximate (pure) best responses are:

BR(ε,A,y) ≡
{

x ∈ �m : xT Ay ≥ zT Ay − ε,∀z ∈ �m

}

PBR(ε,A,y) ≡
{
i ∈ [m] : Aiy ≥ Ary − ε,∀r ∈ [m]

}

The sets of approximate (pure) best responses of the column player against a strategy
x ∈ �m of the row player, given that the column player adopts the payoff matrix B ,
are defined in a similar fashion:

BR(ε,BT ,x) ≡
{

y ∈ �n : yT BT x ≥ zT BT x − ε,∀z ∈ �n

}

PBR(ε,BT ,x) ≡
{
j ∈ [n] : BT

j x ≥ BT
r x − ε,∀r ∈ [n]

}

2Without loss of generality.
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The notion of Nash equilibria was introduced by John Nash [24]. We give here the
definition wrt3 bimatrix games:

Definition 2 (Nash Equilibrium) For any bimatrix game 〈A,B〉, a profile (x,y) ∈
�m × �n is a Nash Equilibrium (NE in short) iff both players adopt 0-approximate
best responses against the opponent: x ∈ BR(0,A,y) and y ∈ BR(0,BT ,x). Equiva-
lently, (x,y) ∈ �m × �n is a NE of 〈A,B〉 iff both players adopt wpp 0-approximate
only pure best responses against the opponent: supp(x) ⊆ PBR(0,A,y) and
supp(y) ⊆ PBR(0,BT ,x). The set of profiles that are NE of 〈A,B〉 is denoted by
NE(A,B).

Due to the apparent difficulty in computing NE for arbitrary bimatrix games, the
recent trend is to look for approximate equilibria. Two definitions of approximate
equilibria that concern this paper are the following:

Definition 3 (Approximate Nash Equilibria) For any positive number ε > 0 and any
bimatrix game 〈A,B〉, a profile (x,y) ∈ �m × �n is:

– An ε-approximate Nash Equilibrium (ε-ApproxNE in short) iff each player
chooses an ε-approximate best response against the opponent:

[
x ∈ BR(ε,A,y)

] ∧
[
y ∈ BR(ε,BT ,x)

]
.

– An ε-well-supported Nash Equilibrium (ε-SuppNE in short) iff each player as-
signs positive probability only to ε-approximate pure best responses against the
strategy of the opponent:

{∀i ∈ [m], xi > 0 ⇒ i ∈ PBR(ε,A,y)

∀j ∈ [n], yj > 0 ⇒ j ∈ PBR(ε,BT ,x)

To see the difference between the two notions of approximate equilibria, consider
the well known Matching Pennies game, defined by the bimatrix:

(A,B) =
[
(1,0) (0,1)

(0,1) (1,0)

]

Consider the profile (e1,
1
2 · (e1 + e2)). It is easy to observe that this is actually a

0.5-ApproxNE for the two players, but it is also a (worst possible) 1-SuppNE, since
the column player assigns positive probability mass to column 1, by which she gets
a payoff of zero, although the pure best response (column 2) assures a payoff of one,
given the row player’s adopted strategy e1.

Clearly any NE is both a 0-ApproxNE and a 0-SuppNE. It is also straightfor-
ward to observe that every ε-SuppNE is also an ε-ApproxNE, but not necessarily
vice versa, as was shown in the previous example. Indeed, the only thing we cur-

rently know towards this direction, is that from an arbitrary ε2

8n
-ApproxNE one can

3With respect to.
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construct an ε-SuppNE in polynomial time [8]. It is also a folklore observation that
both ε-ApproxNE and ε-SuppNE are not affected by shifting of the game by some
real constant. We shall refine this observation later (see Lemma 2), to show that the
addition of arbitrary row vector rT to all the rows of A and the addition of arbitrary
column vector c to all the columns of B , does not affect the SuppNE of the game.

Remark Note that both notions of approximate equilibria are defined wrt an additive
error term ε. Although (exact) NE are known not to be affected by any positive scal-
ing, it is important to mention that approximate notions of NE are indeed affected.
Therefore, from now on we adopt the commonly used assumption in the literature
(e.g., [7, 8, 13, 21, 23]) that, when referring to ε-ApproxNE or ε-SuppNE, the bima-
trix game is considered to be a [0,1]-bimatrix game. This is mainly done for sake of
comparison of the results on approximate equilibria.

Of particular importance are the uniform points of the (k−1)-simplex �k , consid-
ered for example in [3] wrt empirical probability distributions, and in [23] as strate-
gies of players in bimatrix games, or even as approximation points of non-convex
quadratic programs [5, 25]:

Definition 4 (Uniform Profiles) A point x ∈ �r is called a k-uniform strategy iff
it assigns to each action a probability mass that is some multiple of 1

k
: x ∈ �r ∩

{0, 1
k
, 2

k
, . . . , k−1

k
,1}r ≡ �r(k). In the special case that the only possibility for an

action is to get either zero probability or 1
k

, we refer to a strict k-uniform strategy.

We denote the space of strict k-uniform strategies by �̂r (k) ≡ �r ∩ {0, 1
k
}r . A profile

(x,y) ∈ �m × �n for which x is a (strict) k-uniform strategy and y is a (strict) �-
uniform strategy, is called a (strict) (k, �)-uniform profile.

We shall finally denote by k-NASH the problem of constructing an arbitrary NE
for a finite k-player game in normal form.

3 Related Work and Contribution

The computability of NE in bimatrix games has been a long standing open problem
for many years. The most popular algorithm for computing NE in these games, is the
algorithm of Lemke and Howson [22], which is an adaptation of Lemke’s algorithm
for finding solutions (if such exist) for arbitrary instances of the Linear Comple-
mentarity Problem (LCP). Unfortunately, it has been recently proved by Savani and
von Stengel [28] that this pivoting algorithm may require an exponential number of
steps before finding a NE, no matter which starting point is chosen. Moreover, it is
well known that various (quite natural) restrictions of the problem (e.g., uniqueness,
bounds on support sizes, etc.) lead to NP-hard problems [10, 16].

A very recent series of research papers within the last two years deal with the
complexity of k-NASH. Initially [12, 17] introduced a novel reduction technique and
proved that 4-NASH is PPAD-complete. Consequently this result was extended to
3-player games [11]. Surprisingly, Chen and Deng [7] proved the same complexity
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result even 2-NASH. In view of all these hardness results for the k-NASH, under-
standing the limitations of the (in)approximability of the problem is quite important.
To our knowledge, the first result that provides ε-ApproxNE within subexponential
time, is the work of Lipton et al. [23]. In particular, for any constant ε > 0, they
prove the existence of an ε-ApproxNE for arbitrary n × n bimatrix games, which
additionally is a uniform profile that has supports of size at most 
 logn

ε2 �. This leads
to a rather simple subexponential algorithm for constructing ε-ApproxNE for [0,1]-
bimatrix games, simply by checking all possible profiles with support sizes at most

 logn

ε2 � for each strategy. This still remains the fastest strategy to date, for the general
problem of providing ε-ApproxNE for any constant ε > 0.

With respect to certain classes of bimatrix games, [2] proved that there is a
polynomial time algorithm for finding a NE in a planar win lose 2-player game.
As for the tractability of a Fully Polynomial Time Approximation Scheme(FPTAS)
for NE, [8] proved that providing a FPTAS for 2-NASH is also PPAD-complete.
Namely, they proved that unless PPAD ⊆ P, there is no algorithm that constructs
ε-ApproxNE in time poly(n,1/ε), for any ε = n−�(1). Moreover, they proved that
unless PPAD ⊆ RP, there is no algorithm that constructs a NE in time poly(n,1/σ),
where σ is the size of the deviation of the elements of the bimatrix. This latter result
essentially states that even the smoothed complexity of the algorithm of Lemke and
Howson is not polynomial.

Wrt constant approximations, most of the research has focused on the notion of
ApproxNE. Namely, the first two results [13, 21] recently made progress in the di-
rection of providing the first ε-ApproxNE and ε-SuppNE for [0,1]-bimatrix games
and some constant 1 > ε > 0. In particular, [13] gave a nice and simple 1

2 -ApproxNE
for [0,1]-bimatrix games, involving only two strategies per player. [13] made also a
quite interesting connection of the problem of constructing 1+ε

2 -SuppNE in an arbi-
trary [0,1]-bimatrix game, to that of constructing ε-SuppNE for a properly chosen
win lose game of the same size. As for [21], based on linear programming tech-
niques, they provided a 3

4 -ApproxNE, as well as a parameterized 2+λ
4 -ApproxNE for

arbitrary [0,1]-bimatrix games, where λ is the minimum payoff of a player at a NE
of the game. Consequently, [18] provided a PTAS for ApproxNE in bimatrix games
in which the sum of the two payoff matrices has fixed rank. Very recently [6, 14, 29]
made progress wrt ApproxNE for constant ε > 0, while [15] proved that in order to
get an ε-ApproxNE for some ε < 1

2 , one must allow at least logarithmic support sizes.
A similar result, but for ε < 1

4 had also been proved in [3]. To date, the state-of-art
result [29] gives a polynomial time algorithm constructing a 0.3393-ApproxNE for
normalized bimatrix games, and a 0.25-ApproxNE for win lose games.

As for SuppNE, [13] proposed an algorithm, which, under a quite interesting graph
theoretic conjecture, constructs in polynomial time a non-trivial SuppNE. Unfortu-
nately, the status of this conjecture is still unknown (it is false for some small in-
stances of graphs). Consequently, [19] followed a graph theoretic approach for con-
structing in polynomial time a SuppNE. It was proved that every win lose bimatrix
game either contains a PNE, or has a (1 − 2

g
)-SuppNE which is constructed in poly-

nomial time, where g ≥ 4 is the girth of the Nash Dynamics graph. This result was
then extended to a (1 − 1

g
)-SuppNE for any [0,1]-bimatrix game. Unfortunately, the

quality of this SuppNE is not necessarily bounded away from the trivial bound of 1,
since it depends on the size of the girth in the Nash Dynamics graph.
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Concerning random [0,1]-bimatrix games, the work of Bárány, Vempala and Vetta
[4] considers the case where all the cells of the payoff matrices are (either uniform,
or normal) iid4 random variables in [0,1]. They analyze a simple Las Vegas algo-
rithm for finding an exact NE in such a game, by brute force on the support sizes,
starting from smaller ones. The running time of their algorithm is O(m2n log logn +
n2m log logm), whp.5 Kontogiannis and Spirakis [19] propose a random model that
is slightly more general than that of [4], and it is proved there that the strict uniform
full mix (1 1

m
,1 1

n
) is an ε-SuppNE whp, for any ε = �(

√
logm/m). The proposed

solution is thus an o(1)-SuppNE which is trivial to construct.

3.1 Our Contribution and Roadmap

We initially prove a result similar to that of [23], but for SuppNE this time (Sect. 4).
In particular, we prove that there is a (wlog strict) uniform profile that is also an
ε-SuppNE, with at most logarithmic support sizes. This directly yields a trivial
nO(logn/ε2) time algorithm (based on exhaustive search of supports of small size) for
constructing ε-SuppNE as well, for any constant ε > 0. The proof of this argument is
an extremely simple application of Althöfer’s Approximation Lemma [3].

We then present (cf. Sect. 5) a line of attack for constructing SuppNE in bimatrix
games, based on the solvability of Linear Programming. In Sect. 5.1 we construct
a 0.5-SuppNE for arbitrary win lose games (Sect. 5.1). To our knowledge, this is
the first constant SuppNE for arbitrary win lose games. Essentially, our technique is
to split evenly the divergence from a properly chosen zero sum game, between the
two players. Then we solve this zero sum game in polynomial time, using its direct
connection to Linear Programming. The computed (exact) NE of the zero sum game
we consider, is indeed proved to be also a 0.5-SuppNE for the initial win lose game.

Consequently (cf. Sect. 5.2) we propose a polynomial time algorithm for con-
structing a 0.667-SuppNE for any [0,1]-bimatrix game. Again we make only one
call to an LP solver.

4 Existence of Uniform SuppNE

The existence of uniform ε-ApproxNE with small support sizes is already known
from [23]. In this section we report a similar result for SuppNE, which is a simple
corollary of Althöfer’s Approximation Lemma [3]:

Theorem 1 (Approximation Lemma [3]) Assume C is any m×n matrix over the real
numbers, with 0 ≤ Ci,j ≤ 1, ∀(i, j) ∈ [m] × [n]. Let p ∈ �m be any m-probability
vector. Fix arbitrary positive constant ε > 0. Then, there exists another probabil-
ity vector p̂ ∈ �m with |supp(p̂)| ≤ k ≡ 
 log(2n)

2ε2 �, such that |pT Cj − p̂T Cj | ≤ ε,

∀j ∈ [n]. Moreover, p̂ ∈ �r(k).

4Independent, identically distributed.
5With high probability, i.e., with probability 1 − m−c , for some constant c > 0.
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The following simple observation is straightforward to prove and will be quite
useful in our discussion:

Claim For any real matrix C ∈ R
m×n and any probability distribution p ∈ �m, the

empirical distribution p̂ ∈ �m produced by the Approximation Lemma assigns posi-
tive probabilities only to rows whose indices belong to supp(p).

We now demonstrate how the Approximation Lemma, along with the previous claim,
guarantees the existence of a uniform profile which is also a (2ε)-SuppNE with sup-
port sizes at most 
 log(2n)

2ε2 �, for any constant ε > 0:

Theorem 2 Fix any positive constant ε > 0 and an arbitrary [0,1]-bimatrix game
〈A,B〉. There is at least one (k, �)-uniform profile which is also a (2ε)-SuppNE for
this game, where k ≤ 
 log(2n)

2ε2 � and � ≤ 
 log(2m)

2ε2 �.

Proof Assume any profile (p,q) ∈ NE(A,B), whose existence is guaranteed for any
finite game in normal form [24]. Due to the Approximation Lemma, there exists
profile (p̂, q̂) ∈ �m(k) × �n(�) such that: (i) |supp(p̂)| ≤ k ≡ 
log(2n)/(2ε2)� and
|pT Bj − p̂T Bj | ≤ ε, ∀j ∈ [n]. (ii) |supp(q̂)| ≤ � ≡ 
log(2m)/(2ε2)�, and |Aiq −
Ai q̂| ≤ ε, ∀i ∈ [m]. Therefore (also exploiting the Nash Property of (p,q) and the
claim that supp(p̂) ⊆ supp(p)) we have:

∀i ∈ [m], p̂i > 0
/∗ Sampling ∗/�⇒ pi > 0

/∗ Nash Prop. ∗/�⇒ Aiq ≥ Arq, ∀r ∈ [m]
/∗ Approx. Lemma ∗/�⇒ Ai q̂ ≥ Ar q̂ − 2ε, ∀r ∈ [m]

The argument for the column player is identical. Therefore, we conclude that (p̂, q̂)

is a (k, �)-uniform profile that is also a (2ε)-SuppNE for 〈A,B〉. �

The following Lemma allows us to assume wlog that there is actually a strict (k, �)-
uniform profile that is also a (2ε)-SuppNE for 〈A,B〉:

Lemma 1 Fix arbitrary constant ε > 0, k = 
 log(2n)

2ε2 � and � = 
 log(2m)

2ε2 �. For any
m × n [0,1]-bimatrix game 〈A,B〉, there is some (km) × (�n) [0,1]-bimatrix game
〈A′,B ′〉 that is polynomial-time equivalent with 〈A,B〉 with regard to (k, �)-uniform
ε-SuppNE. That is, there are polynomial-time computable maps FI : �m �→ �km and
FII : �n �→ ��n such that for any profile (p,q) ∈ �m ×�n that is also an ε-SuppNE,
there is a uniquely defined profile (p̃, q̃) = (FI (p),FII(q)) ∈ �km × ��n, that is
also an ε-SuppNE of 〈A′,B ′〉. Conversely, there are polynomial-time computable
maps HI : �km �→ �m and HII : ��n �→ �n such that for any ε-SuppNE (p̃, q̃) ∈
�km × ��n of 〈A,B〉, there is a unique profile (p̂, q̂) = (HI (p̃),HII(q̃)) ∈ �m × �n

that is an ε-SuppNE of 〈A,B〉. Finally, the proposed mappings assign (k, �)-uniform
profiles of 〈A,B〉 to strict (k, �)-uniform profiles of 〈A′,B ′〉 and vice versa.

Proof For convenience, we first consider the intermediate m × (�n) bimatrix
(A′′,B ′′) ≡ [(A,B), . . . , (A,B)] (by multiplying the columns of (A,B) � times,
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and consequently we construct the (km) × (�n) bimatrix (A′,B ′) by multiplying k

times each row of (A′′,B ′′). We now consider the following mapping of strategies
p ∈ �m to strategies p̃ = FI (p) ∈ �k·m: ∀i ∈ [m],

if pi = ki

k
∈ { 1

k
, . . . , k−1

k
,1}

then p̃i = p̃m+i = · · · = p̃m(ki−1)+i = 1
k
; p̃mki+i = · · · = p̃m(k−1)+i = 0

else p̃i = pi; p̃m+i = · · · = p̃m(k−1)+i = 0

Similarly, for the column player we determine a mapping of strategies q ∈ �n to
strategies q̃ = FII(q) ∈ ��·n: ∀j ∈ [n],

if qj = �j

�
∈ { 1

�
, . . . , �−1

�
,1}

then q̃j = q̃n+j = · · · = q̃n(�j −1)+j = 1
�
; q̃n�j +j = · · · = q̃n(�−1)+j = 0

else q̃j = qj ; q̃n+j = · · · = q̃n(�−1)+j = 0

The inverse mappings are simpler to define: ∀p̃ ∈ �km, we define p̂ = HI (p̃) ∈ �m

as follows: ∀i ∈ [m], p̂i = ∑k−1
r=0 p̃rm+i . Similarly, ∀q̃ ∈ ��n, we define q̂ = HII(q̃) ∈

�n as follows: ∀j ∈ [n], q̂j = ∑�−1
r=0 q̃rn+j .

It is clear from the definition of these transformations, that any (k, �)-uniform
profile for 〈A,B〉 is mapped to a unique strict (k, �)-uniform profile for 〈A′,B ′〉, and
vice versa. It is also straightforward to check that the NE approximability of profiles
is preserved by this set of transformations. Thus, we conclude that (p̃, q̃) is also an
ε-SuppNE of 〈A′,B ′〉.

Conversely, if we start from an arbitrary ε-SuppNE (p̃, q̃) of 〈A′,B ′〉, an al-
most identical reasoning will lead us to the conclusion that its inverse map (p̂, q̂) =
(HI (p̂),HII(q̂)) ∈ �m × �n is an ε-SuppNE of 〈A,B〉. The reason is that p̂i > 0 ⇒
∃ 0 ≤ r ≤ k − 1 : p̃rm+i > 0. The calculations are quite similar to the ones above. �

Therefore, in our quest for SuppNE in [0,1]-bimatrix games 〈A,B〉, we can assume
wlog the existence of a strict (k, �)-uniform profile with k, � ≤ 
 log(2n)

2ε2 �, that is also
(2ε)-SuppNE, due to Lemma 1 and Theorem 2.

5 A Linear Programming Approach for Constructing SuppNE

We shall now exploit the tractability of zero sum games due to their connection to
linear programming, in order to provide a 0.5-SuppNE for arbitrary win lose games
and a 0.667-SuppNE for any normalized bimatrix game.

5.1 Construction of a 0.5-SuppNE for Win Lose Games

In this subsection we provide a 0.5-SuppNE for win lose games, which directly trans-
lates to a 0.75-SuppNE for arbitrary normalized games, if one exploits the nice obser-
vation of [13]. But first we remark that additive transformations (i.e., shift operations)
have no effect on well supported equilibria:
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Lemma 2 Fix arbitrary [0,1]-bimatrix game 〈A,B〉 and any real matrices R,C ∈
R

m×n, such that ∀i ∈ [m],Ri = rT ∈ R
n and ∀j ∈ [n],Cj = c ∈ R

m. Then, ∀1 > ε >

0,∀(x,y) ∈ �m ×�n, if (x,y) is an ε-SuppNE for 〈A,B〉 then it is also an ε-SuppNE
for 〈A + R,B + C〉.

Proof The proof is rather simple and therefore it is left as an exercise. �

Our next theorem tries to construct the “right” zero sum game that would stand
between the two extreme zero sum games 〈R,−R〉 and 〈−C,C〉, wrt an arbitrary
win lose bimatrix game 〈R,C〉.

Theorem 3 For arbitrary win lose bimatrix game 〈A,B〉, there is a polynomial time
constructible profile that is a 0.5-SuppNE of the game.

Proof Consider arbitrary win lose game 〈A,B〉 ∈ {(0,0), (0,1), (1,0)}m×n. We have
excluded the (1,1)-elements because, as we already know, these are trivial PNE of
the game. We transform the bimatrix (A,B) into a bimatrix (R,C) by subtracting 1/2
from all the possible payoffs in the bimatrix: R = A − 1

2E and C = B − 1
2E, where

E = 1 · 1T . We already know that this transformation does not affect the quality of a
SuppNE (cf. Lemma 2).

We observe that the row player would never accept a payoff less than the one
achieved by the (exact) Nash equilibrium (x̂, ŷ) of the (zero sum) game 〈R,−R〉. This
is because strategy x̂ is a maximin strategy for the row player, and thus the row player
can achieve a payoff of at least V̂I ≡ x̂T Rŷ by adopting x̂, for any possible column
that the column player chooses wpp. Similarly, the column player would never accept
a profile (x,y) with payoff for her less than ṼII ≡ x̃T Cỹ, where (x̃, ỹ) is the (exact)
NE of the zero sum game 〈−C,C〉. So, we already know that any 0-SuppNE for
〈R,C〉 should assure payoffs at least V̂I and at least ṼII for the row and the column
player respectively. Clearly, (x̂, ỹ) is a max{ 1

2 − V̂I ,
1
2 − ṼII}-ApproxNE of the game,

but we cannot assure that it is a nontrivial SuppNE of 〈R,C〉. Nevertheless, inspired
by this observation, we attempt to set up the right zero sum game that is somehow
connected to 〈R,C〉, whose (exact) NE would provide a good SuppNE for 〈R,C〉.
Therefore, we consider an arbitrary zero sum game 〈D,−D〉, for which it holds that
D = R + X ⇔ X = D − R and −D = C + Y ⇔ Y = −(D + C) for some m × n

bimatrix (X,Y ). Let again (x̄, ȳ) ∈ NE(D,−D). Then we have (by Nash property):

(x̄, ȳ) ∈ NE(D,−D) = NE(R + X,C + Y) ⇔ ∀i, r ∈ [m], ∀j, s ∈ [n],
{
x̄i > 0
ȳj > 0

⇒
{
(R + X)i ȳ ≥ (R + X)r ȳ
(C + Y)Tj x̄ ≥ (C + Y)Ts x̄ ⇒

{
Ri ȳ ≥ Rr ȳ − [Xi − Xr ]ȳ
CT

j x̄ ≥ CT
s x̄ − [Yj − Ys]T x̄

Since D = R + X = −(−D) = −(C + Y) ⇔ −Z ≡ R + C = −(X + Y), we can
simply set X = Y = 1

2Z, and then we conclude that:

(x̄, ȳ) ∈ NE(D,−D) ⇔
{

∀i, r ∈ [m], x̄i > 0 ⇒ Ri ȳ ≥ Rr ȳ − 1
2 · [Zi − Zr ]ȳ

∀j, s ∈ [n], ȳj > 0 ⇒ CT
j x̄ ≥ CT

s x̄ − 1
2 · [Zj − Zs]T x̄
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Observe now that, since R,C ∈ {(− 1
2 ,− 1

2 ), (− 1
2 , 1

2 ), ( 1
2 ,− 1

2 )}m×n, any row of Z =
−(R + C) is a vector in {0,1}n, and any column of Z is a vector in {0,1}m.
But it holds that ∀ẑ, z̃ ∈ {0,1}k,∀w ∈ �k, (ẑ − z̃)T w ≤ 1T w = 1. So we conclude
that ∀i, r ∈ [m],∀y ∈ �n, [Zi − Zr ]y ≤ 1T y = 1, and ∀j, s ∈ [n],∀x ∈ �m, [Zj −
Zs]T x ≤ 1T x = 1. Therefore we conclude that:

(x̄, ȳ) ∈ NE

(
R + 1

2
Z,C + 1

2
Z

)
⇒

{
∀i, r ∈ [m], x̄i > 0 ⇒ Ri ȳ ≥ Rr ȳ − 1

2∀j, s ∈ [n], ȳj > 0 ⇒ CT
j x̄ ≥ CT

s x̄ − 1
2

⇒ (x̄, ȳ) ∈ 1
2 -SuppNE(R,C).

�

5.2 SuppNE for Normalized Bimatrix Games

Given our result on win lose games, applying a lemma of Daskalakis et al. [13,
Lemma 4.6] for constructing 1+ε

2 -SuppNE of a [0,1]-bimatrix game 〈A,B〉 by any
ε-SuppNE of a properly chosen win lose game of the same size, we could directly
generalize our result to SuppNE for any [0,1]-bimatrix game:

Corollary 1 For any [0,1]-bimatrix game 〈R,C〉, there is a 0.75-SuppNE that can
be computed in polynomial time.

The question is whether we can do better than that. Indeed we can, if we mod-
ify the rationale of the proof of Theorem 3. This way we shall get a parameterized
approximation for [0,1]-bimatrix games. The next theorem demonstrates this para-
meterized method.

Theorem 4 For any [0,1]-bimatrix game 〈R,C〉, and the matrix Z = −(R + C),
there is a polynomial-time constructible ε(δ)-SuppNE for any 0 < δ < 1, where
ε(δ) ≤ max {δ,1 − δ} · (Zmax − Zmin).

Proof We try to find a zero sum game that lies somehow between 〈R,−R〉 and
〈−C,C〉 and indeed provides a guaranteed SuppNE for 〈R,C〉. Therefore, we fix
a constant δ ∈ (0,1), to be determined later. Consequently, we consider the matrix
Z = −(R + C). The zero sum bimatrix game 〈R + δZ,−(R + δZ)〉 is solvable in
polynomial time (by use of linear programming). We denote with (x̄, ȳ) the (exact)
NE of this game. By the definition of NE, the row and the column player assign pos-
itive probability mass only to maximizing elements of the vectors (R + δZ)ȳ and
(−R − δZ)T x̄ respectively. That is: (x̄, ȳ) ∈ NE(R + δZ,−(R + δZ)) ⇔ ∀i, r ∈
[m], ∀j, s ∈ [n],

{
x̄i > 0
ȳj > 0

⇒
{

(R + δZ)i ȳ ≥ (R + δZ)r ȳ
(−R − δZ)Tj x̄ ≥ (−R − δZ)Ts x̄

/∗ C+Z=−R ∗/⇒
{

Ri ȳ + δZi ȳ ≥ Rr ȳ + δZr ȳ
(C + Z − δZ)Tj x̄ ≥ (C + Z − δZ)Ts x̄
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⇒
{

Ri ȳ ≥ Rr ȳ − δ[Zi − Zr ]ȳ
CT

j x̄ ≥ CT
s x̄ − (1 − δ)(Zj − Zs)

T x̄ ⇒
{

Ri ȳ ≥ Rr ȳ − ε(δ)

CT
j x̄ ≥ CT

s x̄ − ε(δ)

where,

ε(δ) ≡ max
i,r∈[m],j,s∈[n],x∈�m,y∈�n

{
δ ·

[
Zi − Zr

]
y, (1 − δ) ·

[
ZT

j − ZT
s

]
x
}

≤ max{δ, (1 − δ)} · (Zmax − Zmin) (1)

The last inequality holds since the vectors x ∈ �m and y ∈ �n considered in the
definition of ε(δ) are probability distributions over the rows and the columns of Z

respectively. Obviously, for any δ ∈ [0,1] it holds that (x̄, ȳ) is an ε(δ)-SuppNE for
〈R,C〉. �

We already know that for win lose bimatrix games ∀i, r ∈ [m],∀y ∈ �n, [Zi −Zr ]y ≤
1T y = 1. This directly yields the result of Theorem 3, if we simply set δ = 0.5. But
let’s see what can be said about arbitrary [0,1]-bimatrix games:

Theorem 5 For any [0,1]-bimatrix game, a 2
3 -SuppNE is constructible in polynomial

time.

Proof Our initial steps are in complete analogy as in the proof of Theorem 4. There-
fore, we know how to construct in polynomial time an ε(0.5)-SuppNE, where,
ε(0.5) ≤ Zmax−Zmin

2 .
Let’s assume now that, for some 0 < ζ < 1, we are in the seek of some ζ -SuppNE

of 〈R,C〉. It is clear that the existence of any element (R,C)i,j ∈ [1 − ζ,1] × [1 −
ζ,1] would indicate a (pure) profile (ei, ej) that is already a ζ -SuppNE. Since these
are detectable in time O(nm), we suppose wlog that for each element of the bimatrix
(R,C), it holds that (Ri,j < 1 − ζ ) ∨ (Ci,j < 1 − ζ ). Now, for Z we observe that
∀(i, j) ∈ [m] × [n],

if 0 ≤ Ri,j ,Ci,j < 1 − ζ

then −2 + 2ζ < Zi,j = −(Ri,j + Ci,j ) ≤ 0

else
(
0 ≤ Ri,j < 1 − ζ ≤ Ci,j ≤ 1

) ∨ (
0 ≤ Ci,j < 1 − ζ ≤ Ri,j ≤ 1

)
�⇒ −2 + ζ < Zi,j = −(Ri,j + Ci,j ) ≤ −1 + ζ

So, since 0 ≤ ζ < 1, we conclude that Z ∈ (−2 + ζ,0]m×n and therefore, ∀i, r ∈
[m],∀y ∈ �n, (Z

i −Zr)y ≤ Zmax −Zmin < 2−ζ , which implies that ε(0.5) = 1− ζ
2 .

Since our approximation is max{ζ,1 − ζ
2 }, our best choice is to set ζ ∗ = 2

3 and we
are done. �

6 Conclusions

In this work we have explored the existence of well supported approximate Nash
equilibria (SuppNE) with small supports, as well as the tractability of constructing
them, both in normalized and win lose bimatrix games.
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First of all we demonstrated the existence of SuppNE of arbitrary (constant) pre-
cision, which additionally have logarithmic supports in both strategies. The proof we
provide is an extremely simple application of Althöfer’s Approximation Lemma, and
directly leads to a subexponential (but unfortunately not polynomial) time algorithm
for constructing arbitrarily precise SuppNE. We then exploited the connection of zero
sum bimatrix games with linear programming, in order to get a 0.5-SuppNE for win
lose games, and a 0.667-SuppNE for normalized games. As for the tractability of
ApproxNE, it is already known how to construct 0.3393-ApproxNE in polynomial
time [29].

The important question, whether there exists a polynomial time approximation
scheme (PTAS) for the construction of either ε-ApproxNE or ε-SuppNE, for any
positive constant 1 > ε > 0, still remains open. It would also be interesting to find
polynomial time algorithms for constructing ε-SuppNE, for some constant 0 < ε <

0.5 for win lose games and 0 < ε < 0.667 for the general case. Even for the case
of ApproxNE, we do not currently know how to construct ε-ApproxNE for some
precision 0 < ε < 0.3393 for normalized games, or even 0 < ε < 0.25 for win lose
games.
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