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Introduction 

The literature on strategic manipulation of decision schemes, following 
the seminal Gibbard-Satterthwaite theorem [6], must deal with the central 
negative result stated by this theorem. If the preference preorderings of the 
agents on the set of alternatives can be any ordering (a condition usually 
referred to as 'unrestricted domain'), then, apart from the dictatorial ones, 
every decision scheme will include an incentive for strategic misrepre- 
sentation of preferences for at least one preference profile. 

Several relaxations of the unrestricted domain assumption have been 
investigated. Following are descriptions of three of them, the essential ones: 
in the most recent one, Gibbard proposes to randomize the choice of the 
elected alternative (thus allowing voting schemes where ties are broken off 
by flipping a coin) and at the same time assumes that each agent has a Von 
Neumann-Morgenstern utility to estimate lotteries (the agents are risk- 
neutral). In this context he proves [7, 8] that non dictatorial strategy-proof 
voting schemes do exist, but unfortunately are not efficient. A second 
relaxation of the unrestricted domain condition amounts to assuming that 
side-payments are allowed among the agents (implying the cardinality of  
their utility functions): this creates several strategy-proof decision schemes 
but strategy proofness is again inconsistent with efficiency of the mechan- 
ism. The economic implications of these strategy-proof mechanisms are 
numerous and have been systematically investigated (on the vast literature 
about Clarke-Groves mechanisms see, e.g., the special supplement of the 
Spring 1977 issue of  Public Choice). 

In view of applications to political science, side payments or lotteries 
over alternatives are hardly justifiable. If we think of decision schemes 
as representing voting procedures, then we need a relaxation of the unre- 
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stricted domain condition which is, in particular, consistent with pure 
ordinality of the preference profile. Such a relaxation has been proposed 
many times in the literature: it is the well-known assumption that the 
preferences of  the agents are all single-peaked. As early as 1961, Dummett 
and Farquharson [4] noticed that the Condorcet winner (which in this 
context is very simply the median peak) yields a social choice function 
immune to any strategic manipulation by an agent or group of agents (see 
also reference [10] ). 

In this paper we intend to deal with the strategy-proof decision schemes 
in this third context where the preferences of the agents are all single- 
peaked along the real line. Assuming that the agents are all aware of this 
'restricted domain', most of the pertinent information about a particular 
preference is described by its 'peak' alternative. Therefore it is natural to 
consider only those voting schemes where each agent simply announces his 
peak-alternative (lies being allowed). Within this framework we charac- 
terize all strategy-proof voting schemes. It turns out that the Condorcet 
winner is not the only strategy-proof voting scheme: actually every strategy- 
proof, efficient and anonymous voting scheme is obtained by adding (n - 1) 
fixed ballots to the n voters' ballots and then choosing the median of this 
larger set of ballots. 1 This provides a larger class of procedures all resembl- 
ing the median peak procedure within which the collectivity as a whole 
influences the final decision without violating the efficiency requirement. 

1. Strategy-proof voting schemes in which the preferences are 
single-peaked 

Let us consider a world with n agents and a set A of alternatives. We denote 
Ui the set of possible preferences of agent i (it is a subset of the set of 
preference preorderings of A). 

Let us say that alternative a 'defeats by majority vote' alternative b if 
the set of agents that strictly prefer a to b contains at least (p + 1) agents 
(we assume temporarily that n = 2p ÷ 1 is odd). 

Suppose that the domains U~ . . . . .  Un are such that for every profde 
(u ~ . . . . .  un) E U t X . . .  X Un there exists a (necessarily unique) Condorcet 
winner, that is, an alternative C(u~ . . . . .  Un) that defeats every other 
alternative by majority vote. We now claim that the social choice function 
(ut . . . . .  un) ~ C(u~ . . . . .  un) is non manipulable by any agent or coalition 
of agents. 

The proof of this result - which is found in the literature as early as 
1948 (see [ 1,2] ) - is elementary and very dose to the proof of Proposition 
1 below. 

From now on, we limit ourselves to the traditional context where a 
Condorcet winner always exists: we assume that A = 6~ is the real line, 2 and 
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that for every i, Ui is the set S of single-peaked preferences, that is to say: 

u E S if and only if there exists an alternative a, the 'peak' of u, 
such that: 

foral lx,  y ~  {Xa<~Y<a ~ u(x)<~u(y)<u(a)  (1) 
<x< y - u(a)>u(x)> ufy) 

(Notice that we identify the preference preordering u with any utility func- 
tion associated with it.) 

Let (ul . . . . .  un) ~ S  n be a profile with the corresponding peaks (al . . . . .  
an). If n = 2p + 1 is odd, the Condorcet winner is the 'median' peak denoted 
by m(al . . . . .  an) and defined by 

= m if and only if / and # {i/ai <~ rn } >~ p + 1 rn (a • an) # {i/ai>~m}>~p+l (2) 1 

(where # Z denotes the cardinality of Z). Note that m(al . . . . .  an) is one 
of the ai. 

As a consequence of the result stated above we obtain that the corre- 
sponding social choice functions are strategy-proof and group-strategy- 
proof. Let us state this property precisely. A basic assumption of the model 
is that the agents are mutually aware that their preferences are single- 
peaked: they are not allowed 3 to announce non single-peaked orderings. 
Throughout the paper we make an additional assumption which implies 
some loss of generality in our model: we assume that each agent's message 
is simply his peak. Accordingly we define a voting scheme as a mapping ~r 
from 6~ n into ~ which associates with every n-tuple (x~ . . . . .  xn) of 
announced peaks the selected alternative ~r(x~ . . . . .  xn). Of course a larger 
class of schemes is obtained by considering all mappings ~r* from S n into ~, 
that is all decision-making mechanisms where each agent's message is to 
announce an entire single-peaked preference• To every voting scheme rc 
(defined as above) we can obviously associate a mapping ~r* def'med by: 

• ° "~  ° ° ° '  ]'~ 1 
. . . . .  

"¢(a~ . . . . .  a n ) ~  n | a i i s t h e p e a k  I =~ |=~r(al . . . . .  an)| 
L of u i 

Therefore our results characterizing the strategy-proof voting schemes # 
provide a great deal of information about strategy-proof decision-making 
mechanisms ~r* (since for every strategy-proof ~r, the associated mechanism 
¢r* is strategy-proof as well). But we do not give a complete characterization 
of strategy-proof mechanisms n*. 4 We can say that the voting scheme ~r 
is strategy proof if for every agent i, and for every single-peaked preference 
ui E S with associated peak ai, we have: 
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V xi ~ ~ V xpE ~ n -  I Ul(n(ai, xp) ) ~ ui(~(xi, x~) ) 

(where xf is  the (n - 1)-uple of peaks announced by the other agents). 
We can say that n is group-strategy-proof is for every coalition S C 

{ 1 . . . . .  n)  for every preference profile (ui)i~s ~ S s with associated peaks 
as = (ai)i~s we have: 

V X s c ~  sc ~ x  s ~ s  V i ~ S  

Ui(ff(X s, XSc) ) > ui(rr(as, Xsc) ) (3) 

The concept of strategy-proofness corresponds to the non-cooperative 
stability of the Nash equilibrium: no agent has an incentive to announce any 
other alternative than his true peak. In a group-strategy proof voting scheme, 
this stability property holds for coalitions as well: no coalition of players 
has an incentive to collectively misrepresent their peaks. Relation (3) above 
amounts to saying that for every profile (ut . . . . .  Un) E S n the n-uple 
(al . . . . .  an) of associated peaks is a strong equilibrium of the normal form 
game ($l . . . . .  ~ uteri, . . . .  UnOn). 

Examples of group-strategy-proof voting schemes are the Condorcet 
voting schemes: 

n(x~ . . . . .  x n )  = m ( x l  . . . . .  xn )  if n is odd (4) 

Actually the above voting schemes are particular members of a larger class 
of group-strategy-proof voting schemes that we will now describe. Let k 
be an integer such that 1 <~ k ~< n. If the real numbers x~ . . . . .  x n are re- 
ordered by increasing value, we denote by *rk(x~ . . . . .  Xn) the number 
ranked k-th. These voting schemes, again, are group-strategy-proof. For k 
= 1 and k = n we obtain in particular: 

nl(x~ . . . . .  x . )  = inf(x~ . . . . .  xn)  (5) 

~r.(x~ . . . . .  x . )  = sup (x l  . . . . .  x . )  (6) 

Voting scheme (5) is interpreted as follows: low alternatives are socially 
praised: only the unanimous coalition can push the selected alternative 
above any fixed level. 

The following proposition describes a class of group-strategy-proof 
voting schemes including all the schemes previously described. 
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Proposition 1 

Let al  . . . . .  a n -  l be (n - 1) real numbers possibly equal to + ~ or - ~ :  

al  . . . . .  a , ,_~ ~ u  ( + o o , - ~ )  

The following voting scheme 

lr:~n ~ rt(xl . . . . .  X n ) = m ( x l  . . . . .  xn,oq . . . . .  a n _ l )  (7) 

is then group-strategy-proof, anonymous (symmetric with respect to the 
players), and efficient (the selected alternative is Pareto optimal). 

Note that in definition (7) we extend directly the def'mition o f  m to ( ~ U  
(_+ * * ) ) 2 . - 1  

Nevertheless the values of  ~r are always finite. 

/ 'roof 
Anonymity  of  7r is clear. 

I f  the peaks of  the agents are al . . . . .  an, then the Pareto set is 

[inf x i ,  sup xi] 
i i 

Therefore efficiency of  rt is a result o f  the following remark: 

then 

Fix (Yx . . . . .  Y 2 n - l )  E ~ 2 n - I  

# { i / y  i ~ i n . f y / , j = l , . . . , n } > ~ n  
I 

Therefore 

m(y l  . . . . .  Y 2 n - l )  >I i n f y / , f o r / =  1 . . . . .  n 
I 

and similarly 

# ( i /Yi<~supy j , j =  1 . . . . .  n}>~ n 
I 

implying 

mOP1 . . . . .  Y 2 n - l )  ~< supyj  , f o r j =  1 . . . . .  n 
J 

That ~r is group-strategy-proof remains to be proved. Suppose the contrary 
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and let (ui)i_- l ..... n ~ S n be a preference profile with associated peaks 
(al . . . . .  an)  such that the agents of  coalition S have an incentive to an- 
nounce x s ~ ~ s  instead of  a s : 

V i E S  u i (~r(xsasc)  ) > ui(rr(a s ,  a s¢ )  ) (8) 

By (8) we have n (x  s ,  asc ) q: n(a s ,  asc ); suppose: 

~r(x s ,  asc ) > ~r(a s ,  as¢ ) (9) 

Because each u i is single peaked (see (1)) ,  inequalities (8) and (9) together 
hnply 

V i ~ S  ai>~r(a  s ,  asc ) (10) 

By definition of  ~r(a s, as.c) = re(a1 . . . . .  an, oq . . . . .  ¢xn_l), ff we set 
( a l  . . . . .  a n ,  Otl . . . . .  Otn - 1 ) = 0~1 . . . . .  Y 2 n  - 1 ) w e  have ' .  

# ( j ~  (1 . . . . .  (2n - ~)}/yj  < ~(a s,  asc )}  >~ n 

Every Yi such that y i  <~ ~r(a s, asc ) corresponds either to some a i with i ~ S  
(by (10) )  or to some %. 

Therefore if we set (x  s, asc , a~, . . ., a n _  ~ ) = (z l . . . . .  z2n _ ~ ) we have: 

# { j ~  {1 . . . . .  2n - 1 }/z i  <~,r(a s ,  a sc ) }  >~ n (11) 

Note that for every real number o~, 

n < # { ] ~  {1 . . . . .  2 n -  1}/z j<~a} =~m(zt  . . . . .  z 2 n _ i ) < ~ a  

Then (11) implies: 

n(Xs ,  Xsc  ) = m(z~ . . . . .  Z 2 n _ | )  <~ n(as ,  asc ) 

This is the desired contradiction. Q.E.D. 

We shall now comment  on the family of  voting schemes introduced in 
Definition 1. 

I f  none of  the numbers a t ,  • • . ,  a n - t  is finite, then the corresponding 
voting scheme ~r is one of  the ~r k described above or more precisely: 

m(x~ . . . . .  x n , - ~  . . . . .  -0" )  = inf{x~ . . . . .  Xn } 

m ( x z  . . . . .  Xn, + ~ ,  --"*, . . . .  -0~)  = ~r:(xl . . . . .  Xn)  
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m ( x ~  . . . . .  x , , ,  + oo, + oo, _ o o ,  . . ., _ o 0 )  = . 3 ( x x  . . . . .  x , , )  

m ( x ,  . . . . .  Xn ' +,~  . . . . .  +oo) = sup(xx . . . . .  x , }  

For n[2 <~ k ~ n, we say that in voting scheme ~rt~, high alternatives are 
socially praised and a quota o f  k agents is required to force the selected 
alternative below any fixed level. 

Let us now consider the case of  a voting scheme (7) where a l , . . . ,  a n_ 1 
are all f'mite: this amounts  to saying that  ' society '  has (n - 1) votes whereas 
each individual has one single vote; therefore unanimous agents can enforce 
any arbitrary alternative, but  as soon as the agent 's preferences differ, then 
the 'social votes'  ax . . . . .  a n_  t arbitrate among them (for instance if  every 
xi  is greater than sup % then the selected alternative inf x i is the closest 
alternative to { a x , . . . ,  o~n_ 1 }).s 

We can note f'marly that  voting schemes (7) contain also the schemes 
where ' society '  has only ( n -  3) votes (take a~ = + ~ ,  t~ 2 = - ~,, next 
a s ,  • • . ,  an finite) or (n - 5) votes (take a l  = a2 = + ~ ,  t~3 = a4 = - ~ ,  next 
as . . . . .  an finite), and so on. 

2. The characterization theorem 

Theorem 

The following two statements are equivalent: 
(i) the voting scheme ~r from ~R n into ~ is strategy-proof,  anonymous,  

and efficient; 
(ii) there exist (n - 1) real numbers a l  . . . . .  a n _ t ~ C R t 3  { + ~ , - ~ , } s u c h  

that:  

V(x~ . . . . .  x n ) E ~  n n(x~ . . . . .  xn )  = m(x~ . . . . .  x n , o q , . . . , a n _ ~ )  
(12) 

Notice that for anonymous and efficient voting schemes, strategy proofness 
is equivalent to group-strategy-proofness (this follows from Proposit ion 1 
and the theorem, as well as from Proposit ion 2 below). 

Proposition 2 

The voting scheme n from ~n into 6~ is strategy-proof and anonymous if 
and only if  there exist (n + 1) real numbers a l ,  • • . ,  an+t  E ~ t9 ( +  ~ ,  - -  ~ }  
such that:  

v ( x ,  . . . . .  x , , ) ~ a "  . ( x ~  . . . . .  x . ) = m ( x ~  . . . . .  x , , , a ~  . . . . .  ~ , , + ~ )  
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In particular a strategy-proof anonymous voting scheme is group-strategy- 
proof. 

Proof of the theorem and Proposition 2 is found in the Appendix. 
Note that Zn, the set of strategy-proof voting schemes, is stable by the 

operation of supremum and infimum (not necessarily finite). Actually one 
proves easily that Zn is the smallest subset of ~ n  stable by supremum 
and infirnum and containing the elementary functions: 

rri(xl  . . . . .  Xn)  = x i  f o r i = l  n foraE6~ 
a r~(x~ . . . . .  Xn)  = a 

. . . . .  

In particular, the sequence Z~, Z~ . . . . .  Zn . . . .  has the following decentral- 
ization property: suppose that the set o fn  agents is partitioned into p-coali- 
tions with respective cardinality nl . . . . .  np. Let rq E Znl . . . . .  ~rp ~ Zn 
be strategy-proof voting schemes among the agent coalitions of the partitio~ 
Finally, let % ~ Zp be a strategy-proof voting scheme among p players. 
Then the compound voting scheme ~r: 

~'~(XI ..... X~I) = ~1~0(~'I ( XI ..... X~I I ), ~'](X~'I I +l ..... Xn, +n~) .... ) 

belongs to Zn. This amounts to saying that if the final decision is taken by 
a two-stage procedure where the initial committee is partitioned into sub- 
committees, each of which has to select a 'representative', then no mani- 
pulation may arise in the procedure as a whole if each stage is independently 
non manipulable. In other words, representatives need not be strategically 
mandated. 

As a final result we can observe that a strategy-proof voting scheme is 
also group-strategy-proof (the proof is similar to the proof of Proposition l 
and left to the reader). 

Conclusion 

This paper investigates one of the possible weakening of the (too demand- 
ing) assumptions of the Gibbard-Satterthwaite theorem. Namely we deal 
with a class of voting schemes where at the same time the domain of 
possible preference preordering of any agent is limited to single-peaked 
preferences, and the message that this agent sends to the central authority 
is simply its 'peak' - his best preferred alternative. In this context we have 
shown that strategic considerations justify the central role given to the 
Condorcet procedure which amounts to elect the 'median' peak: namely 
all strategy-proof anonymous and efficient voting schemes can be derived 
from the Condorcet procedure by simply adding some fLxed ballots to the 
agent's ballots (with the only restriction that the number of fixed ballots 
is strictly less than the number of agents). 
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There fo re ,  as long as the  a l t e rna t ives  can  be  o r d e r e d  a long  the  real  l ine 
w i t h  t he  p re fe rences  o f  t he  agen ts  be ing  s ingle-peaked,  i t  makes  l i t t le  sense 
to  ob jec t  against  t he  C o n d o r c e t  p r o c e d u r e ,  or  one  o f  i ts  var ian ts  t h a t  we 
display in ou r  cha rac t e r i za t ion  t h e o r e m .  

A n  obv ious  top ic  for  f u r t he r  research  wou ld  be  to  inves t igate  reasonab le  
r e s t r i c t ions  o f  t he  d o m a i n  o f  admiss ible  p re fe rences  such  t h a t  a charac te r -  
i za t ion  o f  s t r a t egy -p roo f  vo t ing  schemes  can  be  f o u n d .  The  s ingle-peaked 
c o n t e x t  is obv ious ly  the  s imples t  one ,  a l lowing very  comple t e  charac te r -  
iza t ions .  When  we go o n  o n  to  t he  t w o- d i m ens iona l  s ta te  o f  a l t e rna t ives  
t he  c o n c e p t  o f  single peakedness  i t se l f  is n o t  d i rec t ly  e x t e n d e d  and  a 
genera l i za t ion  o f  ou r  one - d i m ens i ona l  resul ts  seems to  us  to  be  a d i f f icu l t  
b u t  m o t i v a t i n g  goal.  

NOTES 

1. Adding fixed ballots to the voters' ballot is a technical device already used by 
Murakami to describe the so-called representative systems of social functions 
between only two alternatives (see [5, 91). This can be viewed as a special case of 
our very formalism (see note 5). 

2. Actually all the results of this paper are easily transposable to the somewhat more 
elementary context where A is finite and its elements are linearly ordered arbi- 
trarily. 

3. Blin and Satterthwaite prove in [3] that allowing the players to announce any 
ordering would remove the strategy proofness of the voting scheme. 

4. Actually one checks easily that some strategy-proof mechanisms ~r* do not derive 
from one of the strategy-proof voting schemes ~r described in the results stated 
below. Consider for instance the following mechanism involving a single agent 
(n = 1): 

For every z ~ S with associated peak a, we take: 

~r*(z) = a if a < - 1  or a ~ + l  
~r*(z) = - 1  i f - 1  < a < l  and z ( - 1 ) > z ( 1 )  
~r*(z) = +1 i f - l < a < l  and z ( - 1 ) < z ( 1 )  

Clearly this mechanism is strategy-proof (it does not pay to announce a false z) 
but it cannot be derived from a voting scheme in the above sense. 

5. If the agents have only to decide among two alternatives a, b then we obtain 
Murakami's elementary voting schemes of the form : 

m (x ~ . . . . .  Xn,  a . . . . .  a) where agent i 's ballot x i is a or b 
k times 

m(x~  . . . . .  x n, b , . . . ,  b)where agent i 's ballot x i i s a  or b.  
k times 
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APPENDIX 

Proof o f  the theorem and Proposition 2 

Step 1 
For every integer n, n >~ 1, we denote by  Sn the following subset o f  ~ a  n : 

S,, = {~': ,i~ '~ -~ ~ ~ ~ ~ . . . . .  ~ + ~  ~ ~ u {+ ~,  - ~ ) :  

~(X 1 . . . . .  X.)  = r e ( X ,  . . . . .  X n , a ~  . . . . .  an+ , )}  

Every dement  o f  S n is clearly a group-strategy-proof and anonymous vot- 
~ g  scheme: the proof  fo~ows word for word the proof  o f  Proposit ion 1. 
Only efficiency is ~o la ted  since we have for instance: 
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m ( x l  . . . . .  xn,  a ~ a )  = a 

(n + 1) times 

We will now prove that, conversely, every strategy-proof anonymous voting 
scheme belongs to S n. This will prove Proposition 2 and in turn imply the 
theorem, namely, if rr belongs to Sn and moreover, is efficient, we have: 

Y x E ~  m(x,  . . . .  x, a l , .  . . . . . . .  an+l)  = n(x  . . . . .  x )  = x (13) 

n t imes  

Thus % > -- ~ for every i = 1 . . . . .  (n + 1) is impossible (it would contradict 
(13) for x < inf ai) as well as a i < + ~, for every i = 1 . . . . .  (n + 1) (it would 
contradict (13) for x > sup ai). Therefore at least one of  the ai 's is + ~ and 
one is - ~.  

Since m ( +  ,~, - ~,  #1 . . . . .  #2k+1) = m031, • • - ,#2k+i)  we can drop two 
of  the ai's in m ( x l  . . . . .  xn ,  al . . . .  , an+l). This proves that Ir has the 
desired form (7). 

Step 2 
We now prove by induction on n that every strategy-proof anonymous 
voting scheme among n agents belongs to Sn. We start by the rather trivial 
1-agent  voting schemes. To say that ~r from ~ into ~ is strategy-proof is to 
say: 

V x E ~  V u E S ( t h e p e a k o f u i s a )  =~ uQr(a)) >1 u(rr(x))  

Choose two numbersx,  a E ~ and suppose: 

lr(a) < inf{a, n(x)} 

If we have n(a)  < 7r(x) ~< a then the single-peaked utility function u(y)  = 
- l y - a I, with peak a, is such that: 

u(n(a)  ) < u (n (x )  ) 

I f  we have rr(a) < a < rr(x) then the following single-peaked utility function 
with peak a: 

V(x)- ~(a) 
u ( y )  = I a - - - - ~ - ~  " (y  - a )  i f  y ~< a 

1 
t a - y  i f y  >~a 
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is such that: 

u 0r ( a ) )  = ~r(a)-~r(x) < a - ~ r ( x )  = u(~r(x))  

We then obtain that  for every x, a E R 

rr(a) ~> inf{a, ~r(x)} 

A symmetrical argument proves that 

rr(a) ~< sup{a, n(x)} 

Thus the function ~r is such that: 

V x, y E a  ~r(x)~[x ,  ~r0,)] (14) 

Let us set: 

a = inf ~r(x) ~ u { - ~ }  
x ~ R  

~ = suprr(x) ~ ~ R U { + ~ }  
x ~  

For every x ~ ~ ,  we deduce from (14) that ~r(x) E Ix, or] and therefore for 
x ~< ot (if ot is finite) we have: 

a < ~r(x) ~ Ix, a]  ~, ~r(x) = , ,  

A symmetrical argument yields 

v x ~ :  ~r(x)~  [x, '~]  

Therefore f o r x  ~>~ (ifO is finite) we obtain ~r(x) = 0 .  
For every x such that  a < x < O we now have 

~ (x ) ~  Ix, a lC~[x ,~]  = {x} 

Our function ~r is as follows 

n(x)  = ~ i f x ~ < ~  
= x i f t ~ < x  <~/3 
= /~ i f x ~ > #  

Thus ~r(x) = rn(x, a, [3) for a l lx :  this proves that  rr belongs to S~. 



On strategy-proofness  and single peakedness  449 

S tep  3 
We now suppose that our claim holds true for n and we prove it for (n + 1). 

Let  ~r(xo, x l  . . . . .  x n )  be an anonymous strategy-proof voting scheme 
among (m +1) players. If we fix Xo then (x l  . . . . .  x n )  -~ ~r(xo, x t  . . . . .  x n )  
is clearly an anonymous strategy-proof voting scheme among n players. 
By the induction assumption, it belongs to Sn.  There then exist (n + 1) 
functions a~ . . . . .  an+l from ~ into 6~ U {+ ~, -- ~,} such that: 

V (Xo . . . . .  x n )  • ~ " + l  

n(Xo, x ~ . . . . .  x n )  = m ( x  ~ . . . . .  x n ,  eq (Xo ) . . . . .  Otn+l(Xo)) 

Up to a possible redefmition of the oti's we can assume: 

V Xo •6~ a l ( X o ) < . . .  <otn+~(Xo) (15) 

If we now f ix  (x  l . . . . .  Xn)  thenxo -* rt(Xo, x ~ . . . . .  x n )  belongs toS~ and 
therefore verifies property (14): 

V Xo, X ~ • ~  ~ r ( x  1 . . . . .  X n ) • ( ~  t'l 

rr(Xo, x~ . . . . .  Xn)  • [Xo, ~r(x~, x~ . . . . .  Xn)] (16) 

We now fiXXo • (~ and an index k, 1 ~< k ~< (n + 1).  
We can remark that: 

lira m(X . . . . .  X , - X  . . . . .  - X , , ~ l ( X o ) , . . . , a , , + ~ ( x o ) )  = ak(Xo) 
~ . + + ~  

( k - l )  times ( n - k + l )  times 

(the proof of this claim is elementary and left to the reader). 
Applying (16) for fixed xo, xg and with: 

(x, . . . . .  x , )  = ~ . . . . .  x; 7 x , . . . . , - x )  

( k - l )  ( n - k - l )  

we obtain for every index k: 

v Xo, Xo' • ~ ~k(Xo) • [Xo, ~k(Xo')] 

This property implies that at~ belongs to S~ (see Step 2: that ~k takes some 
infinite values does not affect the argument). 

Then t~ can be written as: 
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as(Xo) = m (Xo, as, bs) where -- oo ~< as ~< bk ~< + oo 

and our voting scheme n is written as: 

~r(xo, x~ . . . . .  Xn) = m(x~ . . . . .  Xn, m(xo, a~, b~) . . . .  , 

m(xo, a,,+ ~, b,,+ ~ ) ) 

Using anonymity o f  rr, we now prove: 

b l  = a 2 , .  . . ,  b k = a k +  1 , . . . ,  b n  = a n + l  

First of  all we have by (15) and for all k, 1 ~< k ~< n: 

"d X o E ~  m(xo, ak, bk) <~ m(xo, ak+l, bg+l) 

which is equivalent to a~ <~ ak + ~ and bk <~ bt~ + ~. 
Suppose ak+ l < b~: we can then choose (Xo, x~ . . . . . .  xn)E ~n+~ such 

that : 

[ ak+~ <~ Xo < X n <~ bs 
X 1 = . . .  = X n _  k = ~k < X 0 

X n - k +  1 = . . .  = X n _  1 = 12 > X n 

This implies: 

~r k '  < k - l :  

ak'(Xo) < ak(Xo) = ak+~(Xo) = Xo < ak"(Xo) 

for a l l k "  ~> k + 2  

Therefore 

rr(Xo, x~ . . . . .  Xn) 

= m ( . . .  X . . . . . . .  la . . . .  Xn . . . .  a~ (Xo) . . . .  Xo, X o , - . -  atc"(x0) 

(n-k) ( k - l )  

• . . )  = X 0 

Similarly, we have 

V k ' < k - 1  

O t k ' ( X n )  • 

(17) 

"k(X,,) = ~k+~(X,,) = Xn < ~s"(xn) 

( k - l )  ( n - k )  times 
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for all k" ~> k + 1 

Therefore: 

f f (Xn ,  X I  . . . . .  X n- -1 ,  XO) 

= m ( . .  h . . . . .  /~.. , X O ,  • • O t k ' ( X n ) . .  , X  n ,  X n , . .  O t k " ( X n ) . .  ) 
~ ~ 

( n - k )  ( k - l )  ( k - l )  ( n - k )  times 

---- X n  

This assumption Xo -¢ Xn thus contradicts the anonymity of rr. We have 
proved bk <~ak+l. 

Suppose now b k < ak+l we can then choose (Xo, x l  . . . . .  Xn ) ~ ~n+~ 
such that: 

[ bt~ < Xo < xn <~ ak+l 
X 1 = . . .  = X n _  k = ~ k < X  0 

X n _ k +  1 = . . .  = X n _  1 = ~d > X n 

This implies: 

Y k' < ~ k - 1  

Otk'(XO) <~ Otk(XO) = b k  < a k + l  = O t k + l ( X o ) < O t k " ( X o )  

for all k"  ~>k + 2 (18) 

Therefore 

~r(Xo, x l  . . . . .  x n )  - 

= m ( . .  k . . . . .  # . .  , X n , . .  a ~ ' ( X o ) . . ,  bk, a k + l , . -  ott¢"(Xo)..) 
~ ~ 

( n - k )  ( k - l )  ( k - l )  (n -k)  times 

= X~l 

Thtts we have proved bk = ak+l, that is (17). 

If we set bn + l = an+2 we obtain the following expression of n 

~r(xo . . . . .  xn ) = re(x1 . . . . .  xn , m(xo, a~, a:)  . . . . .  m(xo, a~c, ae + ~ ) . . . .  

. . . .  m(xo,  an+l, an+z) ) (19) 

with 
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- - ~  <~ a~ <~ a~ <~ . . .  <~ ak <~ a k + l  ~ . . .  ~ an+2 ~ oo 

The last step in the proof of the theorem is to establish that for any increas- 
ing sequence a ~ . . . . .  an + z o f this type, we have for every x o, x 1 . . . . .  Xn : 

m(x~  . . . . .  xn  . . .  m ( x o ,  a~, a~+ l ) . .) 

(n+l) terms 

= m ( x o ,  XI . . . . .  Xn, a~ . . . . .  an+z)  (20) 

Step  4 
We prove formula (20). 

First suppose Xo ~<a~. The left-hand term in (20)is then: 

m(x~  . . . . .  x n ,  a~ . . . . .  an+l )  = 0 (21) 

Because (n + 1) agents are a majority we have: 

a~ <~ 0 <~ an+! 

Therefore we have Xo <~ 0 <~ an+2. We then use the following observation: 
if m(y~ . . . . .  yp)  = 0 and yt,+ 1 ~< 0 ~<Yt,+z, then m(y~  . . . . .  Yp+2) = 0. This 
implies here: 

m ( x o ,  x~ . . . . .  Xn,  a~ . . . . .  an+z)  = 0 

The proof of formula (20) in the case xo  ~ a n + 2  is similar. 
Suppose now that for some k, 1 ~< k ~< n + 1 

ak <~ Xo <~ ak+l 

The left-hand term in (20) is then: 

m ( x ~  . . . . .  x n ,  a2 . . . . .  ak ,  Xo, ak+l . . . . .  an+~) = 0' 

Since a2 <~ 0 '  <~ an + ~ we obtain a~ ~ 0 '  <~ an + ~ and by the same observation: 

m ( x o ,  x~ . . . . .  x n, a~, a~ . . . . .  an+z)  = O' 

This concludes the proof of Proposition 2 and the theorem. Q.E.D. 

Although non anonymous voting schemes are much less interesting for 
the social choice theory, it seems worthwhile to characterize every strategy 



proof voting scheme. 

On strategy-proofness and single peakedness 453 

Proposition 3 

The voting scheme ~r among n agents is strategy-proof if and only if there 
exists for every subset S of (1 . . . . .  n } (including the empty set) a real 
number as ~ ~ U {_+ oo} such that: 

v (x~ . . . . .  x . ) ~  a" 

ff(X 1 . . . . .  Xn) = inf  [sup {Xi, as} ] 
s c f i  ..... . ~ i e s  

For instance 2-agent strategy-proof voting schemes take the form: 

(22) 

rr(x~, x~) = inf{a, sup (x~, b~), sup (x2, b2), sup (x~, x~, c)) 

In order to describe this voting scheme, let us suppose 

c < bi < a f o r i =  1,2 

(notice that a <~ bi =~ a <~ sup (xi, bi) so that a can be simply removed from 
the expression of rr, and similarly b i < c ~ sup (xi, bi) <~ sup (x~, x~, c) 
so that sup (xi, bi) can be removed from the same expression; thus these 
inequalities hold true if and only if the four terms are relevant in the expres- 
sion of rr). Furthermore, up to a reordering of the agents, we can assume 
bx ~> b~. We have for every x~, x :  : 

c ~< rr(x~,x~) ~< a and ~rr(xx, X2) =a XI, X2 >~a 
[~(x~,x~)=c "=~ x l , x ~  <c  

Thus the interval [c, a] is imposed for the selected alternative. 
If for some i, x i < a and someL x / >  c then rr is written as: 

n(x~, x2) = inf{ sup (x~, b~), sup (x~, b~), sup (x~, x~)} 

If b~ = b2 this expression is simply m(x~, x2, b), a familiar procedure. 
Otherwise the two agents have different influences on ~r. We will let the 
reader illustrate the above expression for the various relative positions of 
x~,x~ and b~, b2. 

Proof  o f  Proposition 3 

Note that in formula (22), if two coalitions S and T are such that T C S 
and a T < as, then for all x, 
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s u p  (X i ,  a T } ~< sup (xi, as } 
i~  T i~  S 

so that the right-hand term plays no role in (22) and a s can be equivalently 
replaced by a T . 

We can therefore assume: 

V T , S :  T C S  ~, as<~a T (23) 

Let us denote by Zn the set of  voting schemes ~r taking the form (22) for 
some family (as)so { ~ ..... n} of parameters verifying (23). We let the reader 
check that St = Z~. 

We prove Proposition 3 by introduction o f n .  
Assuming that it holds true until n, we choose a strategy-proof voting 

scheme ~r(Xo . . . . .  Xn) among (n + 1) players. For every fixed Xo, rt is an 
n-agent strategy-proof voting scheme, thus belonging to Zn by the induction 
assumption. Therefore ~r can be written as: 

n(Xo, x t  . . . . .  Xn) = inf [sup {xi, as(xo)}] (24) 
s c { l  ..... . }  ~-s 

Let us establish a non empty coalition So and two fixed numbers Xo and x~. 
If we choosex~ . . . . .  xn such that: 

V i ~ S o  xi=lz  

V i ~ S o  x i = X  

We then obtain by (24): 

lira ~r(xo, x~ . . . . .  Xn) = inf as(xo) 
I h ~ + * *  S C S  o 

h i - - 4 - - -  ~ 

By (23) the right-hand term is simply as(xo) .  
Thus we obtain: 

tim rr(xo, x t  . . . . .  xn)  = aso (xo) 
h-~ ÷ . 0  
~1~--~ - -  ~ 

and similarly: 

rm~ ~(xg, x t  . . . . .  x , , )  = as° (xg )  
~.--*+~ 
~ - - ~ - -  ~ 

Because for fixed xt  . . . . .  xn, n is an element of  S t ,  it must verify (14). 
The above two conditions imply that a%~ also verifies (14) for every non 
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empty So. Hence aso belongs to $1 = ~1 and can be written: 

aso (Xo) = inf {aSo, sup (flSo, Xo)} 

A tedious but straightforward computation is now required to check that 
a function written in the form 

inf sup {Xi, inf{a s , sup 0~s, Xo))} 
sc(l ..... n} ies 

actually takes the form (22). 
The last step in the proof of Proposition 3 is to prove that every voting 

scheme of the type (22) is strategy-proof: one simply verifies that every 
function (22) satisfies 

V i V Xi, Xi'~'(l~ V X i ~  n - l  

~r(xi, xt) ~ [Xi, ~r(xi', XT)] Q.E.D. 
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