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Abstract

We consider the problem of locating a facility on a network, represented by a graph. A set of strategic
agents have different ideal locations for the facility; the cost of an agent is the distance between its ideal
location and the facility. A mechanism maps the locations reported by the agents to the location of the
facility. Specifically, we are interested in social choice mechanisms that do not utilize payments. We
wish to design mechanisms that are strategyproof, in the sense that agents can never benefit by lying,
or, even better, group strategyproof, in the sense that a coalition of agents cannot all benefit by lying.
At the same time, our mechanisms must provide a small approximation ratio with respect to one of two
optimization targets: the social cost or the maximum cost.

We give an almost complete characterization of the feasible truthful approximation ratio under
both target functions, deterministic and randomized mechanisms, and with respect to different network
topologies. Our main results are: We show that a simple randomized mechanism is group strategyproof
and gives a (2 − 2/n)-approximation for the social cost, where n is the number of agents, when the
network is a circle (known as a ring in the case of computer networks); we design a novel “hybrid”
strategyproof randomized mechanism that provides a tight approximation ratio of 3/2 for the maximum
cost when the network is a circle; and we show that no randomized SP mechanism can provide an ap-
proximation ratio better than 2 − o(1) to the maximum cost even when the network is a tree, thereby
matching a trivial upper bound of two.
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1 Introduction

We consider a setting which consists of a network (represented by a graph) and a set of strategic agents.
We would like to locate a facility on the network, in a way that is based on the preferences of the agents.
However, the agents may disagree on the ideal location for the facility; in particular, the cost of an agent
given a facility location is the distance of the facility from the agent’s ideal location.

This abstract setting has many natural interpretations. For example, a typical social choice scenario
concerns a network of roads in a town. The mayor would like to choose a location for a public facility, such
as a library or a fire station. Some citizens would like the facility to be close to their homes whereas others
may wish it to be adjacent to their workplace, but they all have (presumably different) ideal locations.

A second, prominent example is obtained by supposing that the network is a telecommunications net-
work, such as a local computer network or the Internet. In this case, the agents are the network users
or service providers, and the facility can be, e.g., a filesharing server or a router. This interpretation also
motivates attention to specific, common network topologies such as tree networks (also known as hierar-
chical networks), star networks (which are, graph-theoretically speaking, a special case of trees), and ring
networks.

Finally, Schummer and Vohra [13] point out that the network can also be virtual rather than physical.
For instance, a group of people may wish to schedule a daily meeting or task (such as a file backup). In this
case, the network is simply a single cycle around the face of a (24 hour) clock; a person whose ideal time is
23:59 should be indifferent between 23:57 and 00:01.

A mechanism in the above setting is a function that receives the ideal locations of the agents as input,
and returns the facility location. Our game-theoretic goal is to design mechanisms that are truthful or
strategyproof (SP), in the sense that an agent cannot benefit by misreporting its ideal location, regardless of
the reports of the other agents. Moreover, we would like our mechanisms to be approximately optimal with
respect to a target function, where approximation is defined in the usual sense by looking at the worst-case
ratio between the cost of the mechanism’s solution and the cost of the optimal solution. Specifically, we
are interested in two target functions: the social cost (the sum of agents’ distances to the facility) and the
maximum cost (the largest distance to the facility). In the road network example minimizing the social cost
makes more sense if the facility is a library, whereas one would wish to minimize the maximum cost if the
facility were a fire station.

Crucially, if one allows the mechanism to make payments, that is, if money is available, then optimal
truthful mechanisms can be obtained by using generic mechanism design techniques, such as augmenting
the optimal solution with Vickrey-Clarke-Groves (VCG) payments (see, e.g., [9]). However, in many set-
tings money cannot be used to induce truthfulness, due to ethical or legal considerations (see, e.g., [14]).
Moreover, in Internet (or, in general, telecommunications) environments making payments is often tech-
nically infeasible due to security and banking issues. Finally, mechanisms like VCG are known to suffer
from a host of disadvantages and paradoxes [11]. Therefore, we will be interested in moneyless mecha-
nisms whose very definition precludes payments. Such mechanisms commonly appear in the social choice
literature, where they are sometimes known as social choice rules. It is important to note that we do not
use approximation to circumvent computational hardness (as our optimization problems are tractable), but
rather approximation is employed to obtain strategyproofness (at the expense of the optimality of the solu-
tion) without resorting to payments.

Related work. The agenda of approximate mechanism design without money, namely the study of mon-
eyless SP approximation mechanisms for optimization problems, was recently explicitly advocated by Pro-
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caccia and Tennenholtz [10], but can be traced back to work on incentive compatible learning by Dekel et
al. [4]. The basic setting of Procaccia and Tennenholtz is a very special case of ours, where the network is,
very simply, a line. It is trivial that if the target function is the social cost, there is an optimal (moneyless) SP
mechanism. However, if one wishes to minimize the maximum cost, the best deterministic SP mechanism
has an approximation ratio of two, whereas the best randomized SP mechanism has a ratio of 3/2. These
straightforward results are summarized in the left column of Table 1. Procaccia and Tennenholtz focus on
two extensions of the basic setting: location of two facilities on a line, and location of one facility on a line
when each agent controls multiple points. All their results hold only when the agents are located on a line,
and they do not consider (more general) networks.

The model investigated by Schummer and Vohra [13] is identical to ours; their goal is to identify the
deterministic SP mechanisms in this setting. Schummer and Vohra give a characterization of all the SP
mechanisms when the underlying network is a tree. Furthermore, the authors demonstrate that if the network
contains a cycle, any SP mechanism is almost dictatorial, in the sense that one fixed agent dictates the
location of the facility. The exact notion of dictatorship is discussed in the sequel. This result is analogous
to the celebrated Gibbard-Satterthwaite impossibility theorem [5, 12], but holds for the case where the
preferences of the agents are restricted by the topology of the network. Note that Schummer and Vohra do
not consider optimizations problems and approximation, nor do they study randomized mechanisms.

A significant body of work (see, e.g., [6, 7, 3]) deals with a model practically identical to ours, and
considers several variations on the following question: how bad can a Condorcet point be in terms of its
social cost? A Condorcet point is a location in a network that is preferred by more than half the agents to
any other location. The quality of the Condorcet point is measured by bounding the ratio between its social
cost and the social cost of the optimal location. In this respect the results are reminiscent of approximation,
but the approach is descriptive rather than algorithmic. In addition, this line of work does not directly deal
with incentives.

Taking the algorithmic perspective, our work is related to the literature on approximation algorithms for
k-median and k-center problems (see, e.g., [2, 1]). However, these problems are tractable when only one
facility must be located (i.e., k = 1), and this is the case we deal with. As mentioned above, the complexity
of our problem (and, hence, the need for approximation) stems from game-theoretic considerations rather
than the combinatorial richness of the problem.

Our results and techniques. This paper is the first to study SP (moneyless) approximation mechanisms
for facility location in networks. More generally, it is also a very early, and in our opinion the most tech-
nically significant, instance of approximate mechanism design without money. Our almost complete char-
acterization of the feasible SP approximation bounds has given rise to three major results; their proofs are
elementary but rather complicated and involve some subtle combinatorial and probabilistic ideas.

Our results are summarized in Table 1. We seek SP mechanisms, but in some cases succeed in obtaining
even stronger guarantees by showing group strategyproofness (GSP); a mechanism is GSP if whenever a
coalition of agents lies, at least one of the members of the coalition does not gain from the deviation.

The upper part of the table contains our results regarding minimization of the social cost, given in
Section 3. For the case where the network is a line, there is a straightforward optimal deterministic GSP
mechanism. In Section 3.1, we observe that a generalization of this mechanism is GSP and optimal when
the network is a tree.

On the other hand, when the network is a circle (e.g., a ring network or the face of a clock), it follows
directly from the results of Schummer and Vohra [13] that no deterministic SP Mechanism can obtain an
approximation ratio better than Ω(n). However, randomization turns out to be quite powerful in this context.
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Line [10] Tree Circle General

SC
Det UB 1 GSP UB 1 GSP LB Ω(n) SP [13] LB Ω(n) SP [13]

Ran UB 1 GSP UB 1 GSP UB 2− 2
n GSP (Thm 3.1+3.3) UB 2− 2

n SP (Thm 3.1)
LB open LB open

MC
Det UB 2 GSP UB 2 GSP UB 2 GSP UB 2 GSP

LB 2 SP LB 2 SP LB 2 SP LB 2 SP

Ran UB 3/2 GSP UB 2− 2
n+2 SP UB 3/2 SP (Thm 4.1) UB 2 GSP

LB 3/2 SP LB 2− o(1) SP (Thm 4.2) LB 3/2 SP LB 2− o(1) SP (Thm 4.2)

Table 1: Summary of our results. The columns correspond to the graph topology, whereas the rows cor-
respond to either social cost (SC) or maximum cost (MC). The rows are further divided into deterministic
mechanisms (Det) or randomized mechanisms (Ran). The cells contain the bounds, where UB and LB stand
for upper bound and lower bound, respectively, while SP and GSP stand for strategyproof and group strate-
gyproof, respectively (ideally the upper bound is GSP while the lower bound is SP). The number of agents
is n. Cells (or columns) with a citation contain results that either appear in, or follow directly from, previous
papers. Cells with a theorem number in parentheses contain our main results.

Mechanism 1 simply chooses an agent at random and returns its ideal location. We observe that this trivial
mechanism has an approximation ratio of 2 − 2/n, where n is the number of agents, for the social welfare
with respect to any network topology. Our main result in Section 3 is that Mechanism 1 is GSP when the
network is a circle. We show that this result can be explicitly stated as follows (with S1 denoting the unit
circle); it may be of interest independently of its game-theoretic interpretation.

Theorem 3.3. Let x1, . . . , xn, y1, . . . , yn ∈ S1, and denote the distance on S1 between x ∈ S1 and y ∈ S1

by d(x, y). Then there exists i ∈ {1, . . . , n} such that

n∑
k=1

d(xi, xk) ≤
n∑
k=1

d(xi, yk) .

The combinatorial heart of the theorem’s proof is the identification of nearly-antipodal pairs: pairs of
points 〈xi, xj〉 such that there are no other points xk in the arc between xi and the antipodal point of xj , and
vice versa. Our proof establishes that there exists such a pair that do not both gain from the deviation, that
is, the above equation holds with respect to one of its two members.

In Section 4, we investigate SP mechanisms for minimization of the maximum cost. We observe that
even a dictatorship gives us a deterministic GSP 2-approximation mechanism. Moreover, this bound is tight
with respect to deterministic mechanisms, even if the network is a line.

In Section 4.1, we deal with randomized mechanisms for the case where the network is a circle, and
present Mechanism 2. This mechanism works by combining two mechanisms: one is applied when all the
agents are located on one semicircle, whereas the other is applied when the agents are not located on one
semicircle. We have the following theorem.

Theorem 4.1. Assume that the network is a circle. Then Mechanism 2 is an SP 3/2-approximation mecha-
nism for the maximum cost.

The result matches an SP lower bound of 3/2. Although the theorem’s proof is quite lengthy, we suggest
that the truly striking aspect of this result is the mechanism itself and its strategyproofness. Indeed, the
mechanism seems to be a coarse hybridization of two mechanisms, where the combination is required for
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achieving the desired approximation ratio. Although each of the two mechanisms is SP in its own right, it
seems to us quite extraordinary that the combined mechanism is SP as well.

As it turns out, when we wish to minimize the maximum cost and the network is a tree, randomization
cannot significantly help us. Indeed, even though we show that there is a randomized SP mechanism with
an approximation ratio of 2 − 2/(n + 2), we establish the following lower bound, which is our third and
final major result.

Theorem 4.2. Let there be n agents. Then there exists a tree network such that no SP randomized mecha-
nism can have an approximation ratio that is smaller than 2−O

(
1

2
√

log n

)
for the maximum cost.

It is interesting to note that, while with respect to minimization of the social cost there is an optimal SP
mechanism on trees but not on circles, when the target function is the maximum cost trees are as hard as
general graphs (the optimal ratio is two), whereas on a circle a better SP approximation ratio is feasible.

Open problems. There is still a gap with respect to the optimal ratio achievable by randomized SP mech-
anisms on a circle, when the target is the social cost. We establish a GSP upper bound of 2− 2/n, and it is
possible to show a lower bound of 1 + ε for a small constant ε > 0. We conjecture that there is an SP lower
bound of 2 − o(1) on a circle. Moreover, while Mechanism 1 is GSP on a circle, it is not GSP in general;
we conjecture that there is a lower bound of Ω(n) with respect to GSP mechanisms in general networks.

A second, small gap has to do with randomized GSP mechanisms on a circle when the target is the
maximum cost. Mechanism 2 gives an SP upper bound of 3/2. However, the mechanism is not GSP, a fact
that is not immediately apparent. The question of whether it is possible to achieve a randomized GSP upper
bound of 3/2 on a circle remains open.

2 Preliminaries

We use the model of Schummer and Vohra [13]. Let N = {1, . . . , n} be the set of agents. The network is
represented by a graphG, formalized as follows. The graph is a closed, connected subset of Euclidean space
G ⊂ Rk. The graph is composed of a finite number of closed curves of finite length, known as the edges.
The extremities of the curves are known as vertices. The agents and the facility may be located anywhere
on G.

The reader might feel that the traditional, discrete model of graphs is more appropriate. In addition,
other related papers (e.g., [7]) consider a similar continuous model, but allow the agents to be located only
on the vertices (whereas the facility can be located anywhere). Crucially, all our results, or slight variations
thereof, hold under both these alternative models as well.

The distance between two points x, y ∈ G, denoted d(x, y), is the length of the minimum-length path
between x and y, where a path is a minimal connected subset of G that contains x and y. The center of the
path between x and y is denoted cen(x, y), that is, it is a point z on the path such that d(x, z) = d(y, z). We
will also use this notation to denote the center of an interval in R.

A cycle in G is defined to be the union of two paths such that their intersection is equal to the set of both
their endpoints. A graph that does not contain cycles is called a tree.

We shall be especially interested in the graph that is a single cycle; we refer to such a graph as a circle.
Given that G is a circle, we denote the shorter open arc between x, y ∈ G by (x, y), and the shorter closed
arc between x and y by [x, y].1 For every x ∈ G, we denote by x̂ the antipodal point of x on G, that is, the

1If x and y are antipodal these arcs are ambiguously defined, and when this is problematic we specify to which arc we are
referring.
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diametrically opposite point. For two points x, y ∈ G, and in the context of an arc of length less than half
the circumference of G, we denote the “clockwise operator” by �, and its strong version by �; specifically,
x � y means that x is clockwise of y on the circle. We believe that this operator is completely intuitive and
requires no formal definition, but in case of need the reader may find such a definition in [13].

Each agent i ∈ N has an (ideal) location xi ∈ G. The collection x = 〈x1, . . . , xn〉 ∈ Gn is referred to
as the location profile.

A deterministic mechanism is a function f : Gn → G that maps the reported locations of the agents to
the location of a facility. When the facility is located at y ∈ G, the cost of agent i is simply the distance
between xi and y:

cost(y, xi) = d(xi, y) .

A randomized mechanism is a function f : Gn → ∆(G), i.e., it maps location profiles to probability
distributions over G (which randomly designate the location of the facility). If f(x) = P , where P is a
probability distribution over G, then the cost of agent i is the expected distance from xi,

cost(P, xi) = Ey∼P [d(xi, y)] .

A mechanism is said to be strategyproof (SP) if agents can never benefit by lying; formally, for every
x ∈ Gn, i ∈ N , and deviation x′i ∈ G, it holds that cost(f(x′i,x−i), xi) ≥ cost(f(x), xi), where x−i =
〈x1, . . . , xi−1, xi+1, . . . , xn〉 is the vector of locations excluding xi.

A mechanism is group strategyproof (GSP) if for every coalition of deviators, there is an agent that
does not benefit from the deviation. Formally speaking, for every x ∈ Gn, every S ⊆ N and every
x′S ∈ GS , there exists i ∈ S such that cost(f(x′S ,x−S), xi) ≥ cost(f(x), xi). A stronger notion of group
strategyproofness that is rather common in the computer science literature is obtained by requiring that
for every deviation, it cannot be the case that at least one member of the coalition strictly gains while the
others do not lose. While our GSP results do not hold under the stronger notion, we note that our slightly
weaker notion is very common in the social choice literature, since in settings with no money (and, hence,
no sidepayments) an agent has no incentive to deviate unless it strictly benefits.

We are interested in optimizing one of two target functions: the social cost, and the maximum cost. The
social cost of a facility location y ∈ G with respect to a preference profile x is sc(y,x) =

∑
i∈N cost(y, xi).

The social cost of a distribution P with respect to x is sc(P,x) = Ey∼P [sc(y,x)]. The maximum cost of
y with respect to x is mc(y,x) = maxi∈N cost(y, xi). Finally, the maximum cost of a distribution P with
respect to x is naturally defined as mc(P,x) = Ey∼P [mc(y,x)].

3 Social Cost

In this section we are interested in finding a facility location that minimizes the social cost. We shall first
investigate the case where the graph G is a tree; we shall then study mechanisms on general graphs, with a
special emphasis on the case where the underlying graph is a circle.

3.1 Mechanisms on Trees

It is well-known that, when n agents are located on a line, the mechanism that returns the location of the
median agent as the facility location is GSP. This is true since an agent can change the location of the
median only by declaring itself to be on the median’s opposite side, thus pushing the median away from its
true location (and this argument is easily generalized for coalitions of agents). Moreover, the median is also
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optimal with respect to the social cost, since any other location with distance δ from the median is further
away by δ from at least n/2 agents, and closer by at most δ to at most n/2 agents. Hence, on a line choosing
the median is an optimal GSP mechanism.

If the graph G is, more generally, a tree, things are not much more complicated. Indeed, consider the
following mechanism for finding the median of a tree with respect to the location profile x ∈ Gn, which
has been suggested in other contexts and may be considered folklore (similar ideas have been published at
least as early as 1981 [6]). We first fix an arbitrary node as the root of the tree. Then, as long as the current
location has a subtree that contains more than half of the agents, we smoothly move down this subtree.
Finally, when we reach a point where it is not possible to move closer to more than half the agents by
continuing downwards, we stop and return the current location.

The fact that the above mechanism is GSP is straightforward, and follows from similar arguments as the
ones given for a median on a line: an agent can only modify the location of the mechanism’s outcome by
pushing the returned facility location away from its true location. It can also be verified that the mechanism
returns a location that is optimal in terms of the social cost. To summarize, under the assumption that the
graph G is a tree there is an optimal GSP mechanism for the social cost.

3.2 Mechanisms on Circles and General Graphs

We next consider the case where the graphGmay contain cycles. With respect to deterministic mechanisms,
the answers that we seek may be found in the paper of Schummer and Vohra. Indeed, Schummer and Vohra
deal with a model that is identical to ours. They show that ifG contains a cycle C, and f : Gn → G is an SP
rule that is onto G, then there is a cycle dictator, that is, there is i ∈ N such that for all x ∈ Cn, f(x) = xi.
In other words, if all the agents are located on C then the dictator single-handedly determines the facility
location.

We claim that this result directly implies a tight SP lower bound of n− 1 on any graph G that contains
a cycle (including a circle). Indeed, if the mechanism is not onto G then let y ∈ G such that for all x ∈ Gn,
f(x) 6= y. Now, consider the profile where all the agents are located at y; since the optimal social cost given
this profile is zero, the approximation ratio of f must be infinite. Therefore, we may assume that f is onto.

Now, if f is GSP and onto, let C ⊆ G be a cycle. By the result of Schummer and Vohra, there is a cycle
dictator, without loss of generality agent 1. Consider a preference profile x ∈ C where x1 = y ∈ C and
xi = z ∈ C for all i ∈ N \ {1}, where y 6= z. We have that the optimal social cost is d(y, z), by locating
the facility at z, whereas f(x) = x1 = y, that is, sc(f(x),x) = (n − 1)d(y, z). Hence, the approximation
ratio of f is at least n− 1.

Enter randomization, which, as we shall demonstrate, allows us to design an SP mechanism with a
constant approximation ratio. We consider the following trivial mechanism.

Mechanism 1 (Random Dictator). Given x ∈ Gn, return a facility location according to the probability
distribution that gives probability 1/n to the location xi, for all i ∈ N .

This mechanism is obviously SP, since by deviating an agent can only lose if its own location is chosen,
and does not affect the outcome if another’s location is selected. We also remark that Mechanism 1 is by no
means novel; it was directly employed by Meir [8] in the context of classification, and a slight variation was
studied by Procaccia and Tennenholtz [10] for facility location on a line when each agent controls multiple
locations. It turns out the mechanism guarantees a constant approximation ratio for the problem at hand
with respect to any graph G.

Theorem 3.1. Let G be a graph, and let N = {1, . . . , n}. Then Mechanism 1 is an SP (2 − 2/n)-
approximation mechanism for the social cost.
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Proof. Given x ∈ Gn, let y ∈ G be the optimal facility location, and denote OPT = sc(y,x). Denoting
Mechanism 1 by rd (for “random dictator”), it follows from the triangle inequality that

sc(rd(x),x) =
∑
i∈N

1
n

∑
j∈N

d(xi, xj) ≤
1
n

∑
i∈N

∑
j∈N\{i}

[d(xi, y) + d(y, xj)]

=
1
n

∑
i∈N

[(n− 1)d(xi, y) + (OPT− d(y, xi))] = OPT +
n− 2
n

∑
i∈N

d(xi, y)

=
(

2− 2
n

)
OPT .

A few comments are in order. First, notice that the exact same proof actually shows that Mechanism 1
gives an approximation ratio of 2 − 2/n in any metric space (and, of course, the mechanism is still SP).
Despite the generality of this theorem and the simplicity of its proof, we have not been able to find this
explicit result in the literature, but we do not preclude the possibility that it exists in some form.

Second, it is easy to see that the analysis in the proof of Theorem 3.1 is tight. Indeed, consider a location
profile where x1 = y ∈ G and xi = z ∈ G for all j ∈ N \ {1}, where y 6= z. Then the social cost of the
optimal location is d(y, z), whereas the social cost of Mechanism 1 is

1
n

(n− 1)d(y, z) +
n− 1
n

d(z, y) =
(

2− 2
n

)
d(y, z) .

Third, in general Mechanism 1 is not GSP. To see this, let N = {1, 2, 3} and consider a star with three
arms, that is, G = (V,E) where V = {v, u1, u2, u3), E contains (v, ui) for i = 1, 2, 3, and d(v, ui) = 1
for i = 1, 2, 3. In particular, d(ui, uj) = 2 for i 6= j. Let x ∈ Gn such that xi = ui for i ∈ N . Then for
all i ∈ N , cost(rd(x), xi) = 4/3, where once again we let rd(x) denote the outcome of Mechanism 1 given
x. Now, consider the profile x′ where x′i = v for all i ∈ N , i.e., the three agents deviate to the center of the
star. Since rd(x′) = v with probability one, we have that cost(rd(x′), xi) = 1, hence all the agents strictly
gain from the joint deviation.

On the other hand, if G is a line then Mechanism 1 is GSP. Indeed, it is quite straightforward that for
any deviation, the leftmost member of the deviating coalition and the rightmost member cannot both benefit
from the deviation: if the expected distance from one decreases, then the expected distance from the other
increases. Much more interestingly, we have the following result.

Theorem 3.2. Let G be a circle. Then Mechanism 1 is GSP.

When analyzing the group strategyproofness of the mechanism, we can assume without loss of gener-
ality that the deviating coalition contains all the agents. Indeed, the expected cost of an agent given that a
nondeviating agent is selected by the mechanism, and the probability that a nondeviating agent is selected by
the mechanism, are both independent of the reports of the deviating agents. Hence (after scaling by a factor
of n), we can give the following combinatorial, more explicit but equivalent formulation of Theorem 3.2,
which may be of independent interest.

Theorem 3.3. Let G be a circle, and let x1, . . . , xn, y1, . . . , yn ∈ G. Then there exists i ∈ N such that∑
k∈N

d(xi, xk) ≤
∑
k∈N

d(xi, yk) . (1)
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The intuition behind the proof of the theorem is as follows. WhenG is a line, we saw that we can identify
a specific pair of agents (the leftmost and rightmost) that cannot both benefit from the deviation; this is also
true when the agents are located on one semicircle, which can then be treated as an interval. However, when
the agents are not on one semicircle, there are no agents that are easily identified as “extreme”. The main
idea is to recognize pairs of “almost extreme” agents which we call nearly-antipodal. The proof establishes
that there exists a pair of nearly-antipodal agents that do not both benefit from the deviation. The full proof
of the theorem is relegated to Appendix A.

Summarizing and slightly generalizing the results given above, we have that if G is a line or a circle,
Mechanism 1 is GSP, whereas if there is a vertex of degree at least three it is not (since any such vertex
locally looks like the counterexample given above). More precisely, we have the following corollary.

Corollary 3.4. Let G be a (connected) graph. Then Mechanism 1 is GSP if and only if the maximum degree
in G is two.

For a constant number of agents n on a circle, we were able to design a nontrivial SP mechanism with
an approximation ratio slightly better than that of Mechanism 1. However, in general it is natural to ask
whether Mechanism 1 is asymptotically optimal among SP approximation mechanisms for the social cost,
that is: Is there an SP Mechanism whose approximation ratio for the social cost is bounded away from two?
We are able to prove a lower bound of 1 + ε for a small constant ε > 0 (which we omit due to lack of
interest), but the gap is still significant. We conjecture that the answer to our question is negative, even if G
is a circle.

Conjecture 3.5. Let N = {1, . . . , n}. Then for any circle G there is no randomized SP (2 − Ω(1))-
approximation mechanism for the social cost.

Furthermore, we conjecture that there are graphs for which it is not possible to design a GSP (random-
ized) mechanism with a sublinear approximation ratio.

Conjecture 3.6. Let N = {1, . . . , n}. Then there exists a graph G such that there is no randomized GSP
o(n)-approximation mechanism for the social cost.

4 Maximum Cost

In this section we shall be interested in SP mechanisms that minimize the maximum cost. The problem
of designing an optimal SP mechanism is very simple with respect to deterministic mechanisms. Recall
that, by the result of Schummer and Vohra [13], strategyproofness can only be obtained by a dictatorship.
Hence, consider the mechanism given by f(x) = x1 for all x ∈ Gn, that is, a dictatorship of agent 1. This
mechanism is clearly GSP. Crucially, this mechanism does quite well in terms of our new optimization goal:
it provides a 2-approximation for the maximum cost. To see this, given x ∈ Gn, let y be the optimal facility
location. Then for all i ∈ N ,

d(x1, xi) ≤ d(x1, y) + d(y, xi) ≤ 2 ·max{d(y, x1), d(y, xi)} ≤ 2 ·mc(y,x) .

On the other hand, a deterministic SP mechanism cannot achieve an approximation ratio better than two,
even if the underlying graph G is a line [10]. Since in a general graph any edge is locally a line, this lower
bound applies to any graph. In other words, dictatorship gives a tight SP upper bound. In the sequel we shall
therefore restrict our attention to randomized mechanisms.
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4.1 Randomized Mechanisms on a Circle

We presently consider the case where the graph G is a circle. An important remark is that, even using
randomization, we cannot hope to achieve an SP approximation ratio better than 3/2. Indeed, Procaccia and
Tennenholtz [10] have established that a randomized SP mechanism does not yield an approximation ratio
smaller than 3/2 on a line. Furthermore, they have provided a straightforward matching GSP upper bound of
3/2 on a line using the Left-Right-Middle (LRM) Mechanism: given x ∈ Gn, with probability 1/4 return the
leftmost agent mini∈N xi, with probability 1/4 return the rightmost agent maxi∈N xi, and with probability
1/2 return the midpoint of the interval between them, that is,

cen
(

min
i∈N

xi,max
i∈N

xi

)
=

mini∈N xi + maxi∈N xi
2

.

The idea behind the strategyproofness of this mechanism is very simple: an agent can only affect the out-
come of the mechanism by deviating to a location x′i < mini∈N xi or x′i > maxi∈N xi. In this case, the
agent pushes the left or right boundaries away from its location by δ, but in doing so may push the midpoint
towards its own location by δ/2. Since the midpoint is selected with probability exactly twice that of each
of the boundaries, the two terms cancel out.

Of course, when the agents are on a circle, in general it is meaningless to refer to the “leftmost” or
“rightmost” agent. However, any semicircle can naturally be treated as an interval, and then the LRM
mechanism can be applied. The mechanism that we propose is in fact a hybrid of two mechanisms: the
LRM mechanism when the agents are located on one semicircle, and the Random Center (RC) Mechanism
(defined below) when the agents are not on one semicircle.

Mechanism 2. Given x ∈ Gn:

1. If x is such that the agents are located on one semicircle, i.e., there exist y, z ∈ G such that for all
i ∈ N , xi ∈ [y, z], then we execute the LRM Mechanism on the arc [y, z], treating it as an interval
with the boundaries y < z.

2. If x is such that the agents are not located on one semicircle, we execute the Random Center (RC)
Mechanism, defined as follows.

(a) Randomly select a point y ∈ G.

(b) Let x̂i and x̂j be the two antipodal points adjacent to y, that is, x̂i is the first antipodal point
encountered when walking clockwise from y, and x̂j is the first antipodal point encountered
when walking counterclockwise from y.

(c) Return cen(x̂i, x̂j).

An equivalent way of thinking about the RC Mechanism is letting the mechanism choose the center of
an interval between two adjacent antipodal points with probability proportional to the length of the interval.

Some technical comments regarding Mechanism 2 are in order. Regarding the first item, there may be
many choices of y and z such that xi ∈ [y, z] for all i ∈ N , but the LRM Mechanism is indifferent to the
choice. In the context of the second item, it holds that y ∈ [x̂i, x̂j ] by the assumption that in x the agents are
not on one semicircle, i.e., y is on the same arc whose center we return. Furthermore, the RC mechanism is
ambiguously defined when the random point y is an antipodal point itself, but this happens with probability
zero.

A priori, it seems there is no reason to suppose that Mechanism 2 is SP, as usually such hybridizations
of SP mechanisms are not SP as a whole. Nevertheless, we have the following theorem.
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Theorem 4.1. Assume that G is a circle. Then Mechanism 2 is an SP 3/2-approximation mechanism for the
maximum cost.

The nontrivial part of the theorem’s proof is the strategyproofness of the mechanism. Although the proof
is long, it revolves around several basic properties of the RC Mechanism. Very generally speaking, one of
the ideas at the core of the proof is that the locations occupied by the agents in x are special, but only in
the sense that for every i ∈ N the antipodal point x̂i is among the antipodal points. For this reason, the
cost of an agent (assuming that the circumference of the circle is one) under the RC Mechanism is at most
1/4 (Lemma B.5). A second important idea is that, from the point of view of agent i, the RC Mechanism
essentially chooses a location uniformly on the circle, except for its behavior on the arc between the two
antipodal points adjacent to xi (Lemma B.4). The detailed proof is given in Appendix B.

It is possible to show that Mechanism 2 is not GSP, even when the agents are assumed not to be located
on one semicircle before and after the deviation (that is, the RC Mechanism is used in both cases). The
counterexample is due to Dror Shemesh.

4.2 Randomized Mechanisms on Trees

In the following we assume that the graph G is a tree. We first observe that randomization allows us to do
slightly better than dictatorship, especially when the number of agents is small. Indeed, given x ∈ Gn, the
center of G with respect to x is a point

y ∈ argminz∈Gmc(z,x) .

It is easy to verify that when G is a tree the center is unique.2 Therefore, we can denote the (unique) center
of G with respect to x by cen(G,x).

We consider the following mechanism: given x ∈ GN , the distribution on the returned location gives
probability 1/(n + 2) to xi for each i ∈ N , and probability 2/(n + 2) to cen(G,x). The fact that the
mechanism is SP follows from the fact that when agent i deviates from xi to x′i, it holds that

|d(xi, cen(G,x))− d(xi, cen(G,x′))| ≤ d(xi, x′i)
2

,

and therefore, denoting the above mechanism by f ,

cost(f(x′), xi)− cost(f(x), xi) ≥
1
n
· d(xi, x′i)−

2
n
· d(x, x′i)

2
= 0 .

The approximation ratio of the mechanism satisfies

mc(f(x),x)
OPT

≤
2

n+2 · OPT + n
n+2 · 2 · OPT

OPT
= 2− 2

n+ 2
.

Despite this small improvement over dictatorship, we shall demonstrate that we cannot do significantly
better. In other words, our final major result asserts that an SP mechanism cannot achieve an approximation
ratio that is bounded away from two for the maximum cost, even on trees.

Theorem 4.2. Let N = {1, . . . , n}. Then there exists a tree G such that no SP randomized mechanism can
have an approximation ratio that is smaller than 2−O

(
1

2
√

log n

)
for the maximum cost.

The proof of the theorem is given in Appendix C.
2This would not be true in a discrete graph model, but this issue can still be easily circumvented.
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x1 x̂1

x2

x̂2

x3

x̂3

x4

x̂4

Figure 1: An illustration of the construction in the proof of Theorem 3.3, for n = 4. The nearly antipodal
pairs are A = {〈x1, x3〉, 〈x2, x4〉, 〈x3, x4〉}.

A Proof of Theorem 3.3

Assume without loss of generality that the circumference of G is 1. Let x1, . . . , xn ∈ G, and define a
multiset X by X = {x1, . . . , xn}. We first note that we can assume that there are no xi, xj ∈ X such that
xj = x̂i. Indeed, in this case the claim holds trivially with respect to either i or j, since for all z ∈ G,

d(xi, z) + d(xj , z) = 1/2 .

In particular, for every xi, xj ∈ X , (xi, xj) and (x̂i, x̂j) are well-defined.
We say that two points xi, xj ∈ X are nearly antipodal if there is no point xk ∈ X such that xk ∈

(xi, x̂j) or xk ∈ (xj , x̂i); let A ⊆ X2 be the set of all nearly antipodal pairs. Given a nearly antipodal pair
〈xi, xj〉 ∈ A, let the critical arc of 〈xi, xj〉, denoted crit(xi, xj), be the long open arc between x̂i and x̂j ,
that is,

crit(xi, xj) = G \ [x̂i, x̂j ] = (xi, x̂j) ∪ [xi, xj ] ∪ (xj , x̂i) .

See Figure 1 for an illustration of the construction given above.
Let y1, . . . , yn ∈ G, and define a multiset Y by Y = {y1, . . . , yn}. It is sufficient to prove that there

exists a pair of nearly antipodal points 〈xi, xj〉 ∈ A such that∑
k∈N

d(xi, xk) +
∑
k∈N

d(xj , xk) ≤
∑
k∈N

d(xi, yk) +
∑
k∈N

d(xj , yk) .

Indeed, in this case we get that Equation (1) holds with respect to either xi or xj . Therefore, assume for the
purpose of contradiction that for every pair of nearly antipodal points 〈xi, xj〉 ∈ A,∑

k∈N
d(xi, xk) +

∑
k∈N

d(xj , xk) >
∑
k∈N

d(xi, yk) +
∑
k∈N

d(xj , yk) . (2)

We claim that Equation (2) implies that for every pair of nearly antipodal points 〈xi, xj〉 ∈ A, the
number of points from Y on crit(xi, xj) is strictly greater than the number of points from X on the same
arc. Formally, for 〈xi, xj〉 ∈ A, let

αXij = |{xk ∈ X : xk ∈ crit(xi, xj)}| ,
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and
αYij = |{yk ∈ Y : yk ∈ crit(xi, xj)}| .

We have the following claim.

Lemma A.1. Let 〈xi, xj〉 ∈ A. Then αYij > αXij .

Proof. For every point z ∈ [xi, xj ], we have that

d(xi, z) + d(xj , z) = d(xi, xj) .

Let d′(xi, xj) be the length of the longer arc G \ [xi, xj ] between xi and xj , namely

d′(xi, xj) = d(xi, x̂j) + d(x̂j , x̂i) + d(x̂i, xj) = d(xi, xj) + 2 · d(xi, x̂j) > d(xi, xj) .

For every point z ∈ [x̂i, x̂j ] it holds that

d(xi, z) + d(xj , z) = d′(xi, xj) .

Finally, it holds that for every z ∈ (xi, x̂j) ∪ (xj , x̂i),

d(xi, xj) < d(xi, z) + d(xj , z) < d′(xi, xj) .

Since xi and xj are nearly antipodal, there are no points from X in (xi, x̂j) and (xj , x̂i). Therefore,∑
k∈N

d(xi, xk) +
∑
k∈N

d(xj , xk) = αXij · d(xi, xj) + (n− αXij ) · d′(xi, xj) . (3)

On the other hand,∑
k∈N

d(xi, yk) +
∑
k∈N

d(xj , yk) ≥ αYij · d(xi, xj) + (n− αYij) · d′(xi, xj) . (4)

Using Equations (3) and (4), we get that (2) directly implies that αYij > αXij , as claimed.

From Lemma A.1, we immediately get that∑
(xi,xj)∈A

αXij <
∑

(xi,xj)∈A

αYij . (5)

In order to derive a contradiction, we also need the following lemma.

Lemma A.2. There exists r ∈ N such that ∑
(xi,xj)∈A

αXij = r · n , (6)

whereas ∑
(xi,xj)∈A

αYij ≤ r · n , (7)
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Proof. It is easy to see that |A| is odd (e.g., by induction on n); let |A| = 2s+ 1, for some s ∈ N. We first
wish to claim that every xi ∈ X is a member of exactly s+1 critical arcs, which directly proves Equation (6)
with r = s+ 1.

Without loss of generality we prove the claim with respect to x1 ∈ X . Consider the clockwise closed arc
between x1 and x̂1. Let Z = {z1, . . . , zt} be all the points xi or x̂i on this arc, where for all k, zk+1 � zk.
In particular, z1 = x1 and zt = x̂1. For instance, in Figure 1 we have that Z = {x1, x2, x̂4, x3, x̂1}.

Now, we have that the set of nearly-antipodal pairs A is exactly the set of pairs 〈xi, xj〉 such that zk is a
point xi and and zk+1 is an antipodal point x̂j (this is a type 1 nearly-antipodal pair), or zk is an antipodal
point x̂i and zk+1 is a point xj (this is a type 2 nearly-antipodal pair). If 〈xi, xj〉 is a nearly-antipodal pair
of type 1, we have that x1 ∈ [xi, xj ], and hence x1 ∈ crit(xi, xj). On the other hand, if 〈xi, xj〉 is a nearly-
antipodal pair of type 2, then x1 /∈ crit(xi, xj). Since z1 = x1 is a point from X and xn+1 = x̂1 is an
antipodal point, the number of nearly-antipodal pairs of type 1 is exactly s+ 1, which proves the claim.

In order to prove Equation (7), let y ∈ G. It is sufficient to prove that there exists xi ∈ X such that y
appears in at most as many critical arcs as xi, since we already know that xi is a member of exactly s + 1
critical arcs. We consider the two points or antipodal points that are adjacent to y, and briefly examine four
cases.

1. xi � y � xj : y appears in exactly the critical arcs that contain xi (these are also exactly the critical
arcs that contain xj).

2. xi � y ≺ x̂j : y appears in exactly the critical arcs that contain xi.

3. x̂i ≺ y � xj : y appears in exactly the critical arcs that contain xj .

4. x̂i � y � x̂j : When walking counterclockwise from x̂i, let xk ∈ X be the first point from X , and let
x̂l be the last antipodal point such that xk ≺ x̂l � x̂i. Then y is contained in all the critical arcs that
contain xk, except for crit(xk, x̂l), that is, in exactly s critical arcs.

We deduce that every yi is contained in at most r = s + 1 critical arcs, which implies the validity of
Equation (7).

It follows from Lemma A.2 that ∑
(xi,xj)∈A

αXij ≥
∑

(xi,xj)∈A

αYij ,

in contradiction to Equation (5).

B Proof of Theorem 4.1

In the proof we assume without loss of generality that the circumference of the circle G is 1. In addition,
we denote the outcome of the LRM Mechanism and the RC Mechanism given x ∈ Gn by lrm(x) and rc(x),
respectively.

Lemma B.1. Mechanism 2 is a 3/2-approximation mechanism for the maximum cost.

Proof. Assume first that x ∈ Gn is such that not all agents are located on one semicircle. Let α be the length
of the longest arc between two adjacent agents, and assume without loss of generality that these agents are
agents 1 and 2. Since the agents are not located on one semicircle, it holds that α ≤ 1/2. It can be verified
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that the optimal facility location is cen(x̂1, x̂2), hence we have that OPT = (1 − α)/2. The mechanism
selects the optimal solution with probability α, and with probability 1−α selects a solution with maximum
cost at most 1/2. Therefore, the approximation ratio is at most

mc(rc(x),x)
OPT

≤
α · 1−α

2 + (1− α) · 1
2

1−α
2

= 1 + α ≤ 3
2
. (8)

If x is such that all the agents are located on one semicircle, then the LRM mechanism is applied: we
choose the optimal location with probability 1/2, and a location with twice the optimal cost with probability
1/2, hence the approximation ration is, once again, 3/2.

In order to establish the strategyproofness of Mechanism 2, we must examine four types of lies: an agent
deviating such that before the deviation all the agents were located on one semicircle and after the deviation
they are located on one semicircle—“semicircle to semicircle” (the LRM Mechanism is applied to both);
not semicircle to semicircle (RC to LRM); semicircle to not semicircle (LRM to RC); and not semicircle to
not semicircle (RC to RC). The semicircle to semicircle case is relatively straightforward, and we tackle it
first.

Lemma B.2 (Semicircle to semicircle). Assume that x ∈ Gn is such that the agents are on one semicircle,
and agent i deviates such that in the new location profile x′ the agents are also on one semicircle. Then

cost(lrm(x), xi) ≤ cost(lrm(x′), xi) .

Proof. Let x1 � x2 � . . . � xn, and denote x1 = l (for “left”) and xn = r (for “right”). Suppose
agent i deviates from xi to x′i, such that the agents are on one semicircle. If (x′i, xi) intersects with the
new semicircle, the proof follows directly from the fact that the LRM Mechanism is SP when applied to an
interval [10].

It is easy to verify that (x′i, xi) may lie in the complement of the new semicircle only if (i) the deviating
agent is r and x′i � l; or (ii) the deviating agent is l and x′i ≺ r. We prove the lemma for the former case,
but note that the latter case is completely analogous.

Indeed, suppose without loss of generality that xi = r and x′i � l. Let r′ be the adjacent agent to r such
that r′ � r. It must hold that x′i � r̂′ (otherwise in the new location profile the agents are not all on one
semicircle). We denote α = d(r, r′), β = d(x′i, l), and γ = d(l, r) (see Figure 2). From the assumptions of
the lemma it follows that γ ≤ 1

2 . The short arc from x′i to xi lies in the complement of the new semicircle if
and only if 1− β − γ ≤ β + γ, that is, β + γ ≥ 1/2.

We first calculate the cost of xi in the location profile x:

cost(lrm(x), xi) =
1
4
· γ +

1
4
· 0 +

1
2
· γ

2
=
γ

2
.

We distinguish between two cases:
Case 1: α ≤ 1−β−γ. In this case, the cost of the LRM Mechanism in the new location profile with respect
to xi is

cost(lrm(x′), xi) =
1
4
· α+

1
4
· (1− β − γ) +

1
2
·
(
α+

γ − α+ β

2

)
=

1
4

+
α

2
.

It holds that
cost(lrm(x), xi) ≤ cost(lrm(x′), xi)⇔ γ ≤ 1

2
+ α ,
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xi = r

l

(a) Truthful location profile x.

xi = r

r′l

x′i

α
β

(b) Manipulated location profile x′.

Figure 2: Illustration of the proof of Lemma B.2.

but this holds since γ ≤ 1
2 .

Case 2: α > 1− β − γ. In this case, the cost of the left-middle-right mechanism in the new location profile
with respect to xi is

cost(lrm(x′), xi) =
1
4
· α+

1
4
· (1− β − γ) +

1
2
·
(

1− β − γ +
γ − α+ β

2

)
=

3
4
− β

2
− γ

2
.

It holds that

cost(lrm(x), xi) ≤ cost(lrm(x′), xi)⇔
γ

2
≤ 3

4
− β

2
− γ

2
⇔ γ ≤ 3

4
− β

2
.

Since γ ≤ 1
2 , it is sufficient to show that 1

2 ≤
3
4 −

β
2 , which holds if and only if β ≤ 1

2 . The last inequality
follows from the fact that all the agents are on one semicircle after the deviation; this concludes the proof of
the lemma.

The other three deviations are more complicated, and their proofs require laying some foundations
first. We start with two simple lemmata concerning partitions of intervals on the line, both of which will
prove useful in several points in the sequel. On a circle, the arc between two points x, y ∈ G such that
d(x, y) ≤ 1/2 can be regarded as an interval.

Lemma B.3. Let x, y ∈ [0, 1] ⊂ R. It holds that

d(x, 1/2) ≤ y · d(x, cen(0, y)) + (1− y) · d(x, cen(y, 1)) .

Proof. Assume without loss of generality that x ≤ 1/2. We distinguish between two cases.
Case 1: y/2 ≥ x. In this case,

y · d(x, cen(0, y)) + (1− y) · d(x, cen(y, 1)) = y ·
(y

2
− x
)

+ (1− y) ·
(
y +

1− y
2
− x
)

=
1
2
− x .

Case 2: y/2 < x. We have that

y·d(x, cen(0, y))+(1−y)·d(x, cen(y, 1)) = y·
(
x− y

2

)
+(1−y)·

(
y +

1− y
2
− x
)

=
1
2
−x+(2xy−y2) .

Since y/2 < x, it holds that 2xy > y2, hence 1/2− x+ (2xy − y2) > 1/2− x.
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Figure 3: Illustration of the proof of Lemma B.5.

Lemma B.4. Let y1, . . . , ym+1 ∈ [0, 1/2] such that y1 = 0, ym+1 = 1/2. For all i = 1, . . . ,m, define
di = yi+1 − yi. Then

m∑
i=1

di ·
 i−1∑
j=1

dj +
di
2

 =
1
8
.

The intuition behind Lemma B.4 is that choosing the center of each interval with probability equal to
the length of the interval is like randomly choosing a point in [0, 1/2] with probability 1/2. The expected
distance of a random point in [0, 1/2] from 0 is 1/4, multiplying by 1/2 yields 1/8.

Proof of Lemma B.4. By reorganizing the terms, it can be verified that

m∑
i=1

di ·
 i−1∑
j=1

dj +
di
2

 =
(
∑m

i=1 di)
2

2
=

1
8
.

The next lemma implies that under the Random Center Mechanism, the cost of an agent is at most 1/4.
It follows from the two previous lemmata.

Lemma B.5. For all x ∈ Gn such that x is not on one semicircle, and for all i ∈ N ,

cost(rc(x), xi) ≤
1
4
.

Proof. Assume that the locations of the agents satisfy x̂1 � x̂2 · · · � x̂n � x̂1, and that there are no
antipodal points in (x̂i, x̂i+1) for all i ∈ N . Let i ∈ N , and assume without loss of generality that xi ∈
[x̂1, x̂2]. In addition, let α = d(x̂1, xi) and β = d(xi, x̂2) (see Figure B).

We wish to calculate the cost of the Random Center Mechanism with respect to agent i. We can break
this cost down into two components: the cost when choosing a point in the arc [x̂1, x̂2] (this happens with
probability α+β), and the rest of the cost. Notice that xi ∈ [x̂1, x̂2], i.e., the length of the arc between x̂1 and
x̂2 that includes xi is is at most 1/2; this holds by the assumption that the agents are not on one semicircle.
Therefore we can treat [x̂1, x̂2] as an interval. By normalizing d(x̂1, x̂2), we get from Lemma B.3 that if we
partition the arc [x̂1, x̂2] into two arcs of length y and 1− y and choose the center of each with probability y
and 1− y, respectively, the cost of agent i can only increase. In particular, this is true when y = α. Hence,
we have that

cost(rc(x), xi) ≤ cost(rc(x ∪ {x̂i}), xi) , (9)
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Figure 4: Illustration of the proof of Lemma B.6.

where x ∪ {x̂i} is the profile x with an additional agent at x̂i, that is, an additional antipodal point at xi. It
is sufficient to show that

cost(rc(x ∪ {x̂i}), xi) ≤
1
4
.

The expression cost(rc(x ∪ {x̂i}), xi) is the expected distance from agent i when the center of one of the
arcs

[xi, x̂2], [x̂2, x̂3], [x̂3, x̂4], . . . , [x̂n, x̂1], [x̂1, xi] , (10)

is chosen, where the probability of choosing the center of an arc is its length. In order to make this explicit,
denote di = d(x̂i, x̂i+1) for i = 1, . . . , n− 1, dn = d(x̂n, x̂1). We have

cost(rc(x∪{x̂i}), xi) =
α2

2
+
β2

2
+
i−1∑
j=2

(
dj ·

(
β +

j−1∑
k=2

dk +
dj
2

))
+

n∑
j=i

dj ·
α+

n∑
k=j+1

dk +
dj
2


(11)

We partition the expression in the right hand side of Equation (11) into two sums, each corresponding
to the cost of the mechanism on a semicircle of length 1/2, and apply Lemma B.4 to each, with y1 = xi in
both cases, and d1 = α or d1 = β. In more detail, it holds that

β2

2
+

i−1∑
j=2

(
dj ·

(
β +

j−1∑
k=2

dk +
dj
2

))
=

1
8
,

and
α2

2
+

n∑
j=i

dj ·
α+

n∑
k=j+1

dk +
dj
2

 =
1
8
.

We conclude that the expression on the right hand side of Equation (11) is exactly 1/4.

Lemma B.6 (Not semicircle to semicircle). Assume that x ∈ Gn is such that the agents are not on one
semicircle, but agent i deviates such that in the new location profile x′ the agents are on one semicircle.
Then

cost(rc(x), xi) ≤ cost(lrm(x′), xi) .
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ŷ
q

p
λ

δ

Figure 5: Illustration of the proof of Lemma B.7.

Proof. By Lemma B.5 we have that cost(rc(x), xi) ≤ 1/4, therefore it will be sufficient to prove that
cost(lrm(x′), xi) ≥ 1/4.

Let l (for “left”) and r for “right” be the two extreme agent locations in x′, where l � r. Note that since
the agents were not on one semicircle under x, we have that xi ∈ (l̂, r̂). Let y = cen(l, r) be the center of
the arc (l, r) (see Figure 4). We claim that d(xi, y) ≥ 1/4. This follows immediately from the facts that
d(l̂, y) ≥ 1/4, d(r̂, y) ≥ 1/4, and xi ∈ (l̂, r̂). Hence, the cost of the mechanism is at least

cost(lrm(x′), xi) =
1
4
· d(xi, l) +

1
4
· d(xi, r) +

1
2
· d(xi, y) ≥ 1

4
· (d(xi, l) + d(xi, r)) +

1
2
· 1

4
≥ 1

4
,

where the last transition follows from the fact that d(xi, l) + d(xi, r) is the length of the long arc between l
and r, therefore the value of this sum is at least 1/2.

In order to deal with the last two deviations, we require one additional fundamental lemma. The lemma
asserts that the cost of the RC Mechanism with respect to a point y can only decrease if the point y is added
to the vector of locations. This is, in fact, the mirror image of Equation (9), which is itself a special case of
Lemma B.3.

Lemma B.7. Let x ∈ Gn such that x is not on one semicircle, and let y ∈ G. Then

cost(rc(x), y) ≥ cost(rc(x ∪ {y}), y) .

Proof. The cost incurred from the mechanism rc(x) with respect to y is identical to the cost incurred from
rc(x ∪ {y}) for all the intervals, except for the interval the point ŷ is on. Let p and q denote the antipodal
points adjacent to ŷ such that p � ŷ � q. Denote δ = d(p, ŷ) and λ = d(ŷ, q), and assume without loss of
generality that δ ≤ λ (see Figure 5).

It is sufficient to show that the cost incurred when the random chosen point is on the arc [p, q] is lower
under rc(x ∪ {y}) than under rc(x). The cost incurred by points on the arc [p, q] under rc(x ∪ {y}) is
δ (d(y, p) + δ/2) + λ (d(y, q) + λ/2). The cost incurred by points on the arc [p, q] under rc(x) is (δ +
λ)
(
d(y, q) + δ+λ

2

)
. It holds that

(δ + λ)
(
d(y, q) +

δ + λ

2

)
≥ δ

(
d(y, p) +

δ

2

)
+ λ

(
d(y, q) +

λ

2

)
⇔ d(y, q) + λ ≥ d(y, p).

The inequality on the right hand side holds since d(y, q) + λ = 1
2 while d(y, p) ≤ 1

2 .
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Figure 6: Illustration of the proof of Lemma B.8.

Lemma B.8 (Semicircle to not semicircle). Assume that x ∈ Gn is such that the agents are on one semi-
circle, but agent i deviates such that in the new location profile x′ the agents are not on one semicircle.
Then

cost(lrm(x), xi) ≤ cost(rc(x′), xi) .

Proof. Let x1 � x2 · · · � xn be the location of the n agents, and denote l = x1 (the leftmost agent)
and r = xn. Let i ∈ N , and assume without loss of generality that d(xi, r) ≤ d(xi, l), or equivalently
d(xi, l̂) ≤ d(xi, r̂). Let α = d(r, l̂), and β = d(r, xi). Finally, let x′i denote the new location of agent i (see
Figure 6).

We first calculate the cost of xi in the location profile x under the LRM mechanism. We have that
d(xi, l) = 1

2 − α− β, d(r, l) = 1
2 − α, and

d(xi, cen(l, r)) =
1
4
− α

2
− β .

Then

cost(lrm(x), xi) =
β

4
+

1
2 − α− β

4
+

1
4 −

α
2 − β
2

=
1
4
− α

2
− β

2
. (12)

We now wish to give a lower bound on cost(rc(x′), xi). First, by Lemma B.7 we have that

cost(rc(x′), xi) ≥ cost(rc(x′ ∪ {xi}), xi) .

A subtle remark is that the above argument allows us to take r̂ into account even if xi = r and agent i
deviated to x′i, a fact that allows us to avoid distinguishing this extreme case.

Next, we would like to fix an “optimal” location for x̂′i. First notice that since x′ is not on one semicircle,
it must hold that x′i ∈ (r̂, l̂), that is, x̂′i ∈ (r, l). Now, we ask: what is the location of x̂′i that yields the lowest
cost with respect to xi, when the RC Mechanism chooses a point inG\ (l̂, r̂) (the long arc between l̂ and r̂)?
There are no antipodal points, other than x̂′i, in G \ (l̂, r̂). Furthermore, we can treat this arc as an interval
with respect to distances from xi, since the short arcs [xi, l̂] and [xi, r̂] are contained in G\ (l̂, r̂). Therefore,
we can apply Lemma B.3 (by normalizing the length of G \ (l̂, r̂)). In particular, let x̂∗i � xi such that

d(x̂∗i , xi) = d(xi, l̂) = α+ β ,

and let x∗ = 〈x∗i , x−i〉; see Figure 6 for an illustration. From (the proof of) Lemma B.3 it follows that

cost(rc(x′ ∪ {xi}), xi) ≥ cost(rc(x∗ ∪ {xi}), xi) .
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Hence, it is sufficient to prove that

cost(rc(x∗ ∪ {xi}), xi) ≥
1
4
− α

2
− β

2
. (13)

We calculate the cost of the mechanism rc(x∗ ∪ {xi}) with respect to agent i. Let y be the point chosen
by the mechanism. By the choice of x∗i , if y is on the arc [l̂, x̂∗i ], the cost is zero. If y ∈ [l̂, x̂i], we apply
Lemma B.4 with y1 = xi, ym+1 = x̂i, yj = x̂j−1 for j = 2, . . . ,m+ 1, and d1 = α+ β. We get:

(α+ β)2

2
+

m∑
j=2

(
dj ·

(
α+ β +

j−1∑
k=2

dk +
dj
2

))
=

1
8
.

Thus,
m∑
j=2

(
dj ·

(
α+ β +

j−1∑
k=2

dk +
dj
2

))
=

1
8
− (α+ β)2

2
. (14)

Similarly, if y ∈ [x̂i, x̂∗i ], we apply Lemma B.4 with y1 = xi, y2 = x̂∗i , ym+1 = x̂i, yj = x̂n−j+3 for
j = 3, . . . ,m+ 1, and d1 = α+ β. We get the same expected cost as in Equation (14).

Taken together,

cost(rc(x∗ ∪ {xi}), xi) = 2
(

1
8
− (α+ β)2

2

)
=

1
4
− (α+ β)2 .

It holds that
1
4
− (α+ β)2 ≥ 1

4
− α

2
− β

2
⇔ α+ β ≤ 1

2
,

but the last inequality follows directly from the fact that xi ∈ [r, l]. This establishes Equation (13), and thus
completes the proof of Lemma B.8.

Lemma B.9 (Not semicircle to not semicircle). Assume that x ∈ Gn is such that the agents are not on one
semicircle, and agent i deviates such that in the new location profile x′ the agents are not on one semicircle.
Then

cost(rc(x), xi) ≤ cost(rc(x′), xi) .

Proof. The proof of the lemma follows quite directly from the previous lemmata. Indeed, by Lemma B.7
we have that

cost(rc(x′ ∪ {xi}), xi) ≤ cost(rc(x′), xi) .

Let p, q ∈ G be the two antipodal points adjacent to xi. By Lemma B.4, for any x̂′i ∈ G \ [p, q],

cost(rc(x), xi) = cost(rc(x′ ∪ {xi}), xi) .

Hence, it sufficient to handle the case where x̂′i ∈ [p, q]. Notice that xi ∈ [p, q], that is, xi is in the short
arc between p and q, by our assumption that the agents in x are not on one semicircle. Therefore, we can
apply Lemma B.3 to this arc (by normalizing its length, and replacing x in the lemma by xi and y by x̂′i). It
follows that the optimal location for x̂′i is the edges of the arc [p, q], which directly means that

cost(rc(x), xi) ≤ cost(rc(x′ ∪ {xi}), xi) .
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(b) Location profile x1.

Figure 7: An Illustration of the proof of Theorem 4.2, for m = 3 and k = 2. A number inside a node
indicates the number of agents that are located at this node.

C Proof of Theorem 4.2

Let m, k ∈ N, whose value remains to be determined. The construction of the graph G is recursive, and
depends onm and k. We start with an edge of length 1, which connects the vertices l0 (for “left”) and r0 (for
“right”). The vertex l0 is connected to m vertices via edges of length 1; these vertices are called left vertices
on level 1. Each left vertex on level 1 is connected to m vertices via m edges of length 2; these vertices are
called left vertices on level 2. In general, each left vertex on level d is connected to m left vertices on level
d + 1 via edges of length 2d. The maximum level is k, that is, the left vertices on level k are leaves. The
construction is symmetric with respect to the right vertices, i.e., r0 is connected to m right vertices on level
1 via edges of length 1, and so on.

Now, let f : Gn → ∆(G) be a randomized SP mechanism. Assume for ease of exposition that 2mk

divides n, and consider a location profile x0 where there are n/2 agents at l0 and n/2 agents at r0; this profile
is illustrated in Figure 7(a). Clearly, since the distance between l0 and r0 is 1, we have that E[d(f(x0), l0)] ≥
1/2, or E[d(f(x0), r0)] ≥ 1/2; assume without loss of generality that the former statement is true.

Next, consider the location profile x1, where we have n/2m agents in each left vertex on level 1, and n/2
agents in r0; this profile is illustrated is Figure 7(b). We claim that it still holds that E[d(f(x0), l0)] ≥ 1/2.
Indeed, x1 can be obtained from x0 by moving the agents, one by one, from l0 to the left vertices on level
1. Due to strategyproofness, the expected distance from l0 cannot decrease after each deviation. Since the
expected distance was initially at least 1/2, this is true after the n/2 agents have all deviated.

Denote the left vertices on level 1 by l11, . . . , l
1
m. For any point y ∈ G such that d(y, l0) ≥ 1/2, we have

that
m∑
j=1

d(y, l1j ) ≥ m+ (m− 2) · 1
2

=
3m− 2

2
.

Since this is true point-wise, it is also true that the sum of expected distances between f(x1) and the left
vertices on level 1 is at least 3m−2

2 , that is,

m∑
j=1

E[d(f(x1), l1j )] ≥
3m− 2

2
.
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By averaging over these m vertices we conclude that there exists a left vertex on level 1, denoted l1, such
that E[d(f(x1), l1)] ≥ 3/2− 1/m.

We subsequently consider the location profile x2 that is obtained from x1 by moving the n/(2m) agents
from l1 to its m neighbors on level 2, such that each left vertex on level 2 that is adjacent to l1 has n/(2m2)
agents. By similar arguments as before, we get that E[d(f(x2), l1)] ≥ 3/2− 1/m, and, therefore, that there
exists a left vertex on level 2 that is adjacent to l1, call it l2, such that

E[d(f(x2), l2)] ≥
2m+ (m− 2)

(
3
2 −

1
m

)
m

≥ 7
2
− 4
m

.

We inductively build location profiles x3,x4, . . . ,xk in this fashion. We then have the following claim.

Lemma C.1. There exists a left vertex on level k, denoted lk, such that

E[d(f(xk), lk)] ≥ 2k+1 − 1
2

− 2k+1 − (k + 2)
m

. (15)

Proof. We prove the lemma by induction on the level d. For d = 0, we have that

20+1 − 1
2

− 20+1 − (0 + 2)
m

=
1
2
,

which is indeed the lower bound that we have obtained for E[d(f(x0), l0)].
Let us assume that there exists a left vertex on level d, denoted ld, such that

E[d(f(xd), ld)] ≥ 2d+1 − 1
2

− 2d+1 − (d+ 2)
m

.

Constructing xd+1 along the lines given above, we get that there is a left vertex on level d+ 1, denoted ld+1,
such that

E[d(f(xd+1), ld+1)] ≥ 1
m

[
2d ·m+ (m− 2)

(
2d+1 − 1

2
− 2d+1 − (d+ 2)

m

)]
≥ 2d+2 − 1

2
− 2d+2 − (d+ 3)

m
.

From Lemma C.1 we obtain a location profile xk and a left vertex on level k, lk, such that Equation (15)
holds, hence the expected maximum distance is at least the expression at the right hand side of Equation (15).
On the other hand, under xk the solution that locates the facility at lk−1 has a maximum cost of 2k−1. The
ratio is at least

mc(f(xk),xk)
mc(lk−1,xk)

≥
2k+1−1

2 − 2k+1−(k+2)
m

2k−1
≥ 2− 1

2k
− 4
m

.

Note that we have to choose m and k such that n/(2mk) ≥ 1, so that we still have at least one agent at each
of m left vertices on level k in our construction. By taking k = Θ

(√
log n

)
, and

m = Θ
(
n1/k

)
= Θ

(
n

1√
log n

)
,

we satisfy the above constraint and get that the approximation ratio of f is as announced.
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