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ABSTRACT
We study rerouting policies in a dynamic round-based variant
of a well known game theoretic traffic model due to Wardrop.
Previous analyses (mostly in the context of selfish routing)
based on Wardrop’s model focus mostly on the static analysis
of equilibria. In this paper, we ask the question whether
the population of agents responsible for routing the traffic
can jointly compute or better learn a Wardrop equilibrium
efficiently. The rerouting policies that we study are of the
following kind. In each round, each agent samples an alter-
native routing path and compares the latency on this path
with its current latency. If the agent observes that it can
improve its latency then it switches with some probability
depending on the possible improvement to the better path.

We can show various positive results based on a rerout-
ing policy using an adaptive sampling rule that implicitly
amplifies paths that carry a large amount of traffic in the
Wardrop equilibrium. For general asymmetric games, we
show that a simple replication protocol in which agents adopt
strategies of more successful agents reaches a certain kind of
bicriteria equilibrium within a time bound that is indepen-
dent of the size and the structure of the network but only
depends on a parameter of the latency functions, that we call
the relative slope. For symmetric games, this result has an
intuitive interpretation: Replication approximately satisfies
almost everyone very quickly.

In order to achieve convergence to a Wardrop equilibrium
besides replication one also needs an exploration compo-
nent discovering possibly unused strategies. We present a
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sampling based replication-exploration protocol and analyze
its convergence time for symmetric games. For example, if
the latency functions are defined by positive polynomials in
coefficient representation, the convergence time is polyno-
mial in the representation length of the latency functions.
To the best of our knowledge, all previous results on the
speed of convergence towards Wardrop equilibria, even when
restricted to linear latency functions, were pseudopolynomial.

In addition to the upper bounds on the speed of conver-
gence, we can also present a lower bound demonstrating
the necessity of adaptive sampling by showing that static
sampling methods result in a slowdown that is exponential
in the size of the network. A further lower bound illustrates
that the relative slope is, in fact, the relevant parameter that
determines the speed of convergence.

Categories and Subject Descriptors
F.2.2 [Analysis of algorithms and problem complex-
ity]: Nonnumerical Algorithms and Problems—Routing and
layout ; C.2.2 [Computer-communication networks]: Net-
work Protocols—Routing protocols

General Terms
Theory, Algorithms

Keywords
Adaptive routing, Wardrop equilibria, convergence time

1. INTRODUCTION
Recent contributions in the field of algorithmic game the-

ory have provided much insight into the structure of Nash
equilibria for routing in networks that lack central coordi-
nation. Prominent results include bounds on the price of
anarchy measuring the performance loss due to selfishness
in relation to the centrally optimized solution, see, e. g., [21,
22], and questions regarding how to design networks such
that equilibria induced by selfish agents coincide with the
globally optimal solution, e. g., by imposing taxes [8, 13] or
by introducing a global instance that controls a small fraction
of the traffic [14, 20]. These static analyses of Nash equilib-
ria disregard the question of how an equilibrium is actually
reached. Classical game theory does not give an answer to
this question either. The motivation of Nash equilibria is
based on idealistic assumptions like unbounded rationality



and global knowledge that, however, are rarely fulfilled in
real-world networks like the Internet.

In this paper, we study the question of how a large popula-
tion of agents can compute or learn an equilibrium efficiently
based on simple sampling and adaption policies. Our moti-
vation is twofold. On the one hand, we want to support the
previous results about Nash equilibria by showing that a pop-
ulation of agents following simple, myopic, and reasonable
rules quickly converges to a Nash equilibrium. On the other
hand, we think that our analysis may contribute to the de-
sign of distributed adaptive re-routing protocols that quickly
converge to stable routing allocations. Our study is based on
the well known traffic model of Wardrop [23] (see also [22])
in which each of an infinite number of agents is responsible
for an infinitesimal amount of traffic. We imagine that the
agents play a repeated game in rounds. In each round, each
agent may compare the latency of his current route with the
latency of another route and switch to the other route if it
promises a better latency. The problem with this natural
approach is that other agents might switch simultaneously
to the same route so that the latency of an agent may not
improve or even get worse. This way, the game may get stuck
in oscillations. This phenomenon is also well known in the
networks community as the instabilities due to oscillations
observed within the ARPANET project are one of the major
reasons why the Internet does not support adaptive routing,
see e. g. [15, 16, 19].

In [12], it was shown that such oscillation effects can be
avoided by letting the agents sample alternative routes at
random and migrate with a probability depending on the
observed latency difference. The weakness of the routing
protocols presented in [12] is that the migration policy de-
pends heavily on the first derivatives of the latency functions:
In order to avoid oscillation the probability to switch to
another path is scaled down by a factor that is linear in the
maximum first derivative over all latency functions. While
this is effective in avoiding oscillation effects it also slows
down the routing process in a dramatic way. For example,
when assuming linear latency functions the obtained bounds
on the convergence time depend in a pseudopolynomial way
on the ratio between the largest and the smallest coefficient
over all latency functions. Several other approaches (see,
e. g. [2, 3, 6, 7]) tackling similar problems are discussed in
the literature. All of them depend on some kind of network
parameter like, e. g., the maximum first derivative or the
maximum latency, in a pseudopolynomial fashion. For a
more detailed discussion on related work see Section 1.3.

In this work, we show that the first derivative of the la-
tency functions is not the limiting factor in the speed of
convergence towards Nash equilibria. We will provide upper
and lower bounds that identify the “relative slope” instead of
the first derivative as the relevant parameter that determines
the convergence time of adaptive routing policies. This pa-
rameter is a generalization of the polynomial degree of a
function. Our approach enables us to obtain the first polyno-
mial bounds on the convergence time of adaptive rerouting
policies for classes of latency functions with bounded relative
slope, especially for latency functions defined by positive
polynomials. Remarkably, some of our upper bounds are
completely independent of any parameter reflecting the size
or the structure of the network but depend only on the la-
tency functions. More specifically, they depend in a linear
fashion on the maximum relative slope over all latency func-

tions. Before describing our results in more detail, let us
give the necessary formal definitions.

1.1 The Model

1.1.1 Wardrop’s traffic model.
We consider a model for selfish routing where an infinite

population of agents carries an infinitesimal amount of load
each [22, 23]. Let E denote a set of resources (edges) with con-
tinuous, non-decreasing latency functions `e : [0, 1] 7→ R≥0.
Furthermore, let [k] = {1, . . . , k} denote a set of commodities

with flow demands or rates ri, i ∈ [k] such that
Pk
i=1 ri = r.

We normalize r = 1. For every commodity i ∈ [k] let
Pi ⊆ 2E denote a set of strategies (paths) available for
commodity i. Let P = ∪i∈[k]Pi and let L = maxP∈P |P |. By
Γ = (E, (`e)e∈E , (Pi)i∈[k], (ri)i∈[k]) we denote an instance of
the routing game. The instance is symmetric if k = 1 and
asymmetric otherwise. An instance is single-resource if for
all P ∈ P, |P | = 1.

For P ∈ P, let fP denote the volume of agents utilizing
strategy P . A population or flow vector (fP )P∈P is feasi-
ble if for all i ∈ [k],

P
P∈Pi

fP = ri. Let fe =
P
P3e fP

denote the load of resource e ∈ E. Then, the latency of a
resource e ∈ E is `e(f) = `e(fe) and the latency of a strat-
egy is `P (f) =

P
e∈P `e(f). By ¯̀(f) =

P
P∈P fP `P (f) =P

e∈E fe `e(f) denote the overall average latency, and for

i ∈ [k] let ¯̀
i =

P
P∈Pi

(fP /ri) · `P (f) denote the average
latency of commodity i.

We are interested in flow assignments that are stable in the
sense that no agent can improve their situation by changing
their strategy unilaterally.

Definition 1 (Wardrop equilibrium [23]). A feasi-
ble flow vector (fP )P∈P is at a Wardrop equilibrium for
the instance Γ if for every commodity i ∈ [k] and every
P, P ′ ∈ Pi with fP > 0 it holds that `P (f) ≤ `P ′(f).

1.1.2 Potential and α-shifted potential.
A natural and nice potential function by Beckmann et

al. [4] allows to formulate the problem of computing a War-
drop equilibrium in form of a convex optimization problem,
see also [22]. The set of allocations in equilibrium coincides
with the set of allocations minimizing the potential function

Φ(f) =
X
e∈E

Z fe

0

`(x) dx .

The allocations in equilibrium do not only all have the same
(optimal) potential but they also impose the same latencies
on all edges. In this sense, the Wardrop equilibrium is
essentially unique. Our goal is the design of distributed
rerouting policies that approximate the Wardrop equilibrium.
As a measure for the quality of approximation, we upper-
bound the factor between the potential achieved after a
certain amount of time divided by the minimal potential
Φ∗. Observe, however, for certain instances of the routing
game, Φ∗ might be zero. In this case, we suggest to shift
the potential by some positive additive term. In general,
we consider an α-shifted potential of the form Φ + α where
α ≥ 0 can be chosen arbitrarily in such a way that, for the
given instance, Φ∗ + α is strictly positive. Let us remark
that shifting the potential can be interpreted as adding a
virtual amount of α to the latency observed on every path.



In fact, this is the way how our algorithms make use of this
parameter.

1.1.3 Relative slope
A rerouting policy cannot guarantee convergence to War-

drop equilibria if the latency functions make arbitrarily large
leaps due to minor shifts of the flow. To restrict the number
of agents migrating simultaneously, it must have some in-
formation about the behavior of the latency functions. Our
analysis shows that the following parameter is relevant.

Definition 2 (relative slope). A differentiable laten-
cy function ` has relative slope d at x if `′(x) ≤ d · `(x)/x.
A latency function has relative slope d if it has relative slope
d over the entire range [0, 1] and a class of latency functions
L has relative slope d if every ` ∈ L has relative slope d.

The polynomial function `(x) = a xd has relative slope d
over the entire range. The exponential function `(x) =
a ·exp(λx) has relative slope at most λ for x ∈ [0, 1] reaching
its maximum λ for x = 1.

We will use the following two facts frequently.

Fact 1. If the function ` has relative slope d and if 0 ≤
δ ≤ 1/(2 d), then `(x (1 + δ)) ≤ (1 + 2 d δ) `(x).

Proof. Let δ ≤ 1/(2 d). The derivative `′(y) of the la-
tency function ` at a point y ∈ [x, (1 + δ)x] is at most
d · `(y)/y ≤ d · `((1 + δ)x)/x. This gives

`((1 + δ)x) ≤ `(x) +

Z (1+δ)x

x

`′(u) du

≤ `(x) + δ x
d `((1 + δ)x)

x
.

Hence, `((1 + δ)x) ≤ 1
1−δ d `(x), and for δ ≤ 1/(2 d), `((1 +

δ)x) ≤ (1 + 2 δ d) `(x), as desired.

We can generalize the definition of relative slope to latency
functions that are not differentiable by requiring `(x(1+δ)) ≤
(1 +O(d δ)) `(x) for x ∈ [0, 1] and δ = O(1/d).

Fact 2. For every flow f , ¯̀(f)/(d+ 1) ≤ Φ(f) ≤ ¯̀(f).

Proof. We compare ¯̀ and Φ termwise. For the upper
bound consider a resource e and note that the contribu-
tion to the average is `e(fe) · fe whereas the contribution

to the potential is
R fe

0
`e(x)dx ≤ `e(fe) · fe by monotonic-

ity of `e. For the lower bound, observe that the ratioR x
0
`e(u) du / (x `e(x)) is minimized if ` has relative slope

d over the entire range [0, 1], i. e. `(·) is a solution of the
functional equation `′(x) = d · `(x)/x for all x ∈ [0, 1]. So-
lutions of this equation are of the form a xd. For these
functions the contribution to the average is a fd+1

e whereas
its contribution to the potential is a 1

d+1
fd+1
e which yields

the desired ratio.

1.1.4 A dynamic extension to Wardrop’s traffic model.
We analyze rerouting policies on the basis of a dynamic,

round-based variant of Wardrop’s traffic model. Each round
starts and ends with a feasible traffic allocation in the static
model. The rerouting policies describe the behavior of the
agents from a local point of view. They consist of simple
probabilistic rules specifying whether an agent stays with his
current routing strategy or switches to another apparently

better strategy. Our rerouting policies are Markovian, that is,
the behavior of an agent only depends on the traffic allocation
at the beginning of the current round and not on observations
made in previous rounds. Following Wardrop’s traffic model,
we assume that traffic is controlled by an infinite population
of agents and we investigate the dynamical behavior of the
system in the fluid limit, that is, the rerouting policies of the
agents are translated into mean field equations that specify
how the population shares allocated to the paths change
from round to round.

1.2 Summary of our results
Let us first present our algorithms and results for symmet-

ric games. Some of the results can be generalized towards
asymmetric games as noted after their presentation.

Our algorithms use an adaptive sampling rule in which
paths are sampled with a probability that increases with the
fraction of agents using this path. In its simplest form our
approach works as follows. Consider an agent currently using
a path P . The agent chooses an alternative path Q with
a probability that is proportional to the fraction of agents
using this path. Then the agent compares the latencies
on the paths P and Q. If `Q is smaller than `P the agent
switches from P to Q with a probability proportional to
(`P − `Q)/(d · (`P + α)), where d ≥ 1 is an upper bound on
the relative slope of the latency functions and α ≥ 0. We
can illustrate the power of this simple protocol in terms of a
bicriteria result. We say that a traffic allocation is in a δ-ε-
equilibrium if almost all agents, i. e. at least a 1− ε fraction
of the agents, have a latency close to the average latency, i. e.,
their latencies are within a factor of (1± δ) of the average
latency. Applying the simple policy described above, the
total number of rounds in which the traffic allocation is not
in a δ-ε-equilibrium is upper-bounded by

O
„

d

ε δ2
· log

„
Φinit + α

Φ∗ + α

««
,

where Φinit and Φ∗ refer to the initial and the optimal poten-
tial, respectively. Remarkably, this bicriteria bound does not
depend on any parameters describing the size or the structure
of the network. It only depends on a single parameter of the
latency functions, namely the maximum relative slope. We
also show how this bicriteria result generalizes to asymmetric
routing games. The major disadvantage of the bicriteria
result is that δ-ε-equilibria are transient in that they can be
left again once they are reached. For this reason we extend
our analysis to approximations of the optimal potential.

The adaptive sampling rule is inspired by the so-called
replicator dynamics from evolutionary game theory where
players compare their payoffs with the payoffs of other play-
ers that are picked uniformly at random from the set of
all players [24, 11]. This way, the probability to choose a
strategy is proportional to the fraction of players using this
strategy. The strength of this approach is that it amplifies
good strategies in an exponential fashion. In our analysis
this is reflected by a geometric improvement of the potential
from round to round until the allocation reaches a state in
which almost all agents have almost the same latency. The
major weakness of this approach, however, is that it only
replicates strategies used by other agents but does not ex-
plore new, unused strategies. Exploring unused strategies,
however, is obviously necessary to ensure convergence to a
Wardrop equilibrium.



We combine exploration based on static, uniform sam-
pling with replication based on adaptive sampling into a
distributed algorithm that we call exploration-replication pol-
icy. The agents perform uniform sampling with sufficiently
small probability. This way, we can guarantee monotonicity
with respect to the potential, i. e., the value of the poten-
tial function decreases from round to round. Unfortunately,
this requires that the probability for uniform sampling is
bounded from above in terms of the reciprocal of the first
derivative of the latency functions. Fortunately, because of
the amplification effects of the replication, this parameter
appears only logarithmically in our result on the speed of
convergence. We need a few more parameters to describe
this result. Let m denote the number of edges, and L the
maximum path length. Let `min denote a lower bound on
the latency on any edge and `′max an upper bound on the
first derivative of the latencies. (In fact, it is sufficient to
upper-bound the first derivate of the latency functions in a
small region around 0.) W. l. o. g., let `′max > `min + α. In
our analysis, we need to assume `min + α > 0, that is, the
latency functions are strictly positive or, alternatively, we
use a positive shift of the potential function. We show that
the exploration-replication policy if parameterized in the
right way reaches a (1 + ε)-approximation of the (α-shifted)
optimal potential in a number of rounds of order at most

poly

„
d · L
ε

«
· polylog

„
m · `′max

`min + α

«
· log

„
Φinit + α

Φ∗ + α

«
.

Let us remark that this bound is polynomial in 1/ε and the
description length of the instance if the latency functions are,
e. g., defined in terms of positive polynomials of arbitrary
degree in coefficient representation. This result about the
speed of convergence with respect to the potential holds only
for symmetric games.

We conclude our analysis with two lower bounds that
substantiate the quality of our results. An important and
unusual characteristic of our policies is that they make use
of the parameter maximum relative slope in order to en-
sure monotonicity with respect to the potential. Our upper
bounds depend in a polynomial fashion on this parameter.
We present a lower bound showing that this dependence can-
not be avoided by the class of policies under consideration.
In particular, we show a lower bound of Ω(d/

√
ε) rounds to

approximate the optimal potential within a factor of 1 + ε,
for all Markovian policies that ensure monotonicity with re-
spect to the potential over a basic class of latency functions
with relative slope at most d. The network underlying this
analysis consists only of two parallel links.

Furthermore, we study the necessity of adaptive sampling.
As explained above, we use this technique to enable the
population of agents to efficiently find those paths that can
support a large amount of traffic. Observe that we achieve
this goal without providing the agents with pre-knowledge
about the latency functions on particular edges. Our lower
bound documents that adaptive sampling is, in fact, neces-
sary to quickly converge to a Wardrop equilibrium under
these conditions, that is, we present an example where the
restriction to static sampling results into a slowdown of the
speed of convergence that is exponential in the size of the
network.

1.3 Related Work
A policy similar to the one described above has been con-

sidered in [11] in a naive way, implicitly assuming that the
agents act sequentially. In particular, all effects of simulta-
neous migrations that potentially cause oscillation effects
and harm network performance are ignored. These prob-
lems are addressed in [12] applying a bulletin board model
inspired by an analysis of load balancing with stale informa-
tion by Mitzenmacher [17]. However, there the bounds on
the time of convergence towards approximate equilibria are
only pseudopolynomial. In particular, the bounds depend
polynomially on the maximum slope of the latency functions
and the maximum path length.

Well established heuristics for convex optimization use
similar techniques to ensure convergence. For example, Bert-
sekas and Tsitsiklis [6] describe a distributed algorithm for
non-linear multi-commodity flow in which the amount of flow
that is moved in one step from one path to another depends
in a linear way on the reciprocal of the second derivative of
the latency functions. This algorithm can also be applied
to compute Nash equilibria in the Wardrop model in a dis-
tributed way in which case the slowdown is again linear in
the first derivative.

The convergence rate of adaptive rerouting policies has
also been studied from the perspective of online learning,
where one aims at minimizing the regret which is defined as
the difference between a user’s average latency over time and
the latency of the best path in hindsight (see, e. g., [2, 3, 7]).
The bounds obtained here also depend pseudopolynomially
on network parameters.

Even-Dar and Mansour [9] study distributed and concur-
rent rerouting policies in a discrete model. Their study is
restricted to networks with parallel links with speeds. Upper
bounds are presented for the case of agents with identical
weights. Their algorithms use static sampling rules that
explicitly take into account the speeds of the individual links.
Berenbrink et al. [5] present an efficient distributed protocol
for balancing identical jobs on identical machines.

Beckmann et al. [4] show that Wardrop equilibria can be
computed in polynomial time. Fabrikant et al. [10] consider
the complexity of computing Nash equilibria in a discrete
model. They show that computing Nash equilibria is PLS-
complete in general whereas there exists a polynomial time al-
gorithm for the case of symmetric network congestion games.
In contrast to our work, these are centralized algorithms
whereas we analyze how agents can compute or learn an
equilibrium in a distributed fashion.

Finally, let us remark that our dynamic systems are sim-
ilar to quadratic dynamic systems [1, 18] in that there is
an infinite number of individuals that are mated at ran-
dom to produce two individuals as offspring. In general,
it is known that such systems with an infinite number of
agents can solve PSPACE-complete problems in a polyno-
mial number of rounds and can hence also compute Wardrop
equilibria. However, this approach again only yields central-
ized algorithms since here, individuals do not have a natural
interpretation as participants in a network routing game.

2. THE EXPLORATION-REPLICATION
POLICY

We now formally introduce our rerouting policy for a class
of latency functions with relative slope d. The policy takes
two parameters α and β. In every round, an agent is activated
with constant probability λ = 1/32. It then performs the



following two steps. Consider an agent in commodity i ∈ [k]
currently utilizing path P .

1. Sampling: With probability (1− β) perform step 1(a)
and with probability β perform step 1(b).

(a) Proportional sampling: Sample path Q ∈ Pi with
probability fQ/ri.

(b) Uniform sampling: Sample path Q ∈ Pi with
probability 1/|Pi|.

2. Migration: If `Q < `P , migrate to path Q with proba-

bility
`P−`Q
d (`P +α)

.

Whereas the parameter α ≥ 0 can be chosen arbitrarily, the
parameter β must be chosen subject to the constraint

β ≤ minP∈P `P (0) + α

L ·maxe∈E maxx∈[0,β] `′e(x)
. (1)

In the following, we always assume that this constraint is
satisfied. We define our policy formally by specifying the
amount of flow that is shifted between any pair of paths
within one round.

Definition 3 (Exploration-Replication Policy).
For an instance Γ let d ≥ 1 be an upper bound on the rela-
tive slope of the latency functions and let β be chosen as in
Equation (1). For every commodity i ∈ [k] and every path
P,Q ∈ Pi with `Q ≤ `P , the (α, β)-exploration-replication
policy migrates a fraction of

µPQ = λ · 1

d

„
(1− β) · fQ

ri
+ β · 1

|Pi|

«
`P − `Q
`P + α

with λ = 1
32

agents from path P to path Q.

In our proofs we will simulate the (α, β)-exploration-repli-
cation policy by applying the (0, β)-exploration-replication
policy to a modified instance with additional offsets α added
to the path latencies.

Fact 3. Let Γ be an instance of the congestion game and
let Γ+α be an instance that we obtain from Γ by inserting
a new resource eP for every P ∈ P with constant latency
function `eP (x) = α. Let Φ and Φ+α denote the respective
potential functions.

1. The (α, β)-exploration-replication policy behaves on Γ
precisely as the (0, β)-exploration-replication policy does
on Γ+α.

2. If Φ+α(f) ≤ (1 + ε) (Φ+α)∗, then Φ(f) ≤ (1 + ε) Φ∗ +
ε α.

2.1 Convergence
In this section we show that our rerouting policy decreases

the potential in every round and that it therefore converges
to a Wardrop equilibrium. Intuitively, the potential decreases
since agents shift flow from high latency strategies to low
latency strategies. Ideally the agents migrating from a strat-
egy P to a strategy Q change the potential by µPQ(`Q − `P )
where µPQ denotes the fraction of these agents. However,
this is not true since the latencies `Q and `P are not constant.

The following lemma establishes that the potential gain
in one round of our strategy is at least half of this ideal
value. A similar result has been shown in [12]. However, here

we improve this result for the (α, β)-exploration-replicaiton
policy, which does not satisfy the requirements of [12], and
for latency functions with bounded relative slope (instead of
bounded first derivative).

For two flow vectors f and f ′ of consecutive rounds, the
virtual potential gain is the potential gain that would occur
if the latencies were fixed at the beginning of the round, i. e.

V(f, f ′) =
X
e∈E

`e(f) · (f ′e − fe) .

By our policy, this value is always negative. We show that
the true potential gain ∆Φ = Φ(f ′)−Φ(f) is at least half of
V(f, f ′).

Lemma 4. Consider an instance Γ and the (α, β)-explo-
ration-replication policy changing the flow vector from f to
f ′ in one step. Then we have

∆Φ = Φ(f ′)− Φ(f) ≥ 1

2

X
P,Q∈P

µPQ (`Q − `P ) =
V(f, f ′)

2
.

The proof extends the arguments given in [12]. We give
bounds on the error terms by which the true potential gain
differs from the virtual potential gain. The proof makes use
of the fact that latency functions have relative slope d to
bound the error terms caused by proportional sampling. The
contribution to the error terms caused by uniform sampling
can be bounded since β is chosen according to Equation (1).
Due to space limitations we defer the proof to the full version.

Corollary 5. The (α, β)-exploration-replication policy
converges towards a Wardrop equilibrium.

3. SYMMETRIC GAMES
In this section, we consider the case of symmetric games

where the number of commodities is k = 1. We will first
derive upper bounds for the time of convergence towards
approximate equilibria and proceed by giving upper bounds
for the number of rounds until the potential is close to the
optimum.

3.1 Bicriteria Approximation
In this section we will use the following bicriterial definition

of approximate equilibria.

Definition 4 (δ-ε-equilibrium). For a flow vector f
let P+(δ) = {P ∈ P | `P (f) ≥ (1 + δ) ¯̀(f)} denote the
set of δ-expensive strategies and let P−(δ) = {P ∈ P |
`P (f) ≤ (1 − δ) ¯̀(f)} denote the set of δ-cheap strategies.
The population f is in a δ-ε-equilibrium iff at most ε agents
utilize δ-expensive and δ-cheap strategies. We write P+ and
P− if δ is clear from the context.

Note that our policy may leave such approximate equilibria
again once they are reached. Hence, we bound the total
number of rounds that are not at an approximate equilibrium.

Theorem 6. Consider a symmetric congestion game Γ
and an initial flow vector finit. For the (α, β)-exploration-
replication policy, the number of rounds in which the popula-
tion vector is not at a δ-ε-equilibrium w. r. t. Γ+α (as defined
in Fact 3) is bounded from above by

O
„

d

ε δ2
log

„
Φ(finit) + α

Φ∗ + α

««
.
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Figure 1: The figure depicts the distribution of the
agents’ latencies. The shaded areas are of the same
size. Since the left area represents the conditional
expectation of the difference between ¯̀ and the la-
tency of an agent with latency in the range [0, ¯̀],
this expectation has a value of at least δ x ¯̀.

In particular, this bound holds for α = β = 0 implying
Γ+α = Γ.

Proof. It is sufficient to consider the case α = 0 (and
Φ∗ > 0). To see this, assume that the lemma is valid for

α = 0 and consider an instance Γ̂ and some α̂ > 0. By
Fact 3, applying the lemma to Γ = Γ̂+α̂ and α = 0 yields
the assertion of the lemma applied to Γ̂ and α̂.

We estimate the virtual potential gain of a round that
starts which a population that is not at a δ-ε-equilibrium.
Recall that the virtual potential gain is the difference between
the potential of two consecutive rounds assuming that the
latency functions were fixed at the beginning of the round.
The virtual potential gain is actually negative. For simplicity,
here we denote by V the absolute value of the virtual potential
gain. By Lemma 4, the true potential gain is at least half of
the virtual potential gain.

Consider a strategy P ∈ P. As long as we are not at a
δ-ε-equilibrium, at least one of the following cases holds.
Case 1. At least ε/2 agents utilize δ-expensive paths.
Case 1a. At least a fraction of x ≥ 1/2 agents utilizes
δ-expensive paths. Let y > 0 denote the fraction of agents
utilizing paths with latency at most ¯̀. Consider a random
agent that is sampled by proportional sampling and let Y
denote the random variable that represents its current latency.
Let D = E[¯̀−Y | Y ≤ ¯̀] denote the conditional expectation
of the difference between Y and ¯̀. We have

D = ¯̀− 1

y

0@ X
P :`P≤¯̀

fP `P

1A .

Substituting this into the definition of ¯̀,

¯̀ =
X

P :`P≤¯̀

fP `P +
X

P :`P>¯̀

fP `P

= y · (¯̀−D) +
X

P :¯̀<`P≤(1+δ)¯̀

fP `P +
X

P :`P>(1+δ)¯̀

fP `P .

By definition of x (for an illustration see Fig. 1),

X
P :`P>(1+δ)¯̀

fP `P ≥ δ x ¯̀+ x ¯̀

Substituting this for the last sum in the previous equation
and solving for δ x ¯̀ yields

δ x ¯̀ ≤ (1− x) ¯̀− y · (¯̀−D)−
X

P :¯̀<`P≤(1+δ)¯̀

fP `P

≤ (1− x) ¯̀− y · (¯̀−D)− (1− x− y) ¯̀

implying D ≥ (δ x/y) ¯̀. All agents with latency at least
(1+δ) ¯̀ that sample a path with latency at most ¯̀migrate to
the new path with probability at least δ/d. The probability to
sample such a path is at least (1−β) y. Their expected latency
gain which is equivalent to their infinitesimal contribution
to the virtual potential gain is at least D. In total there
are x ≥ 1/2 such agents. Altogether, the expected virtual
potential gain is

V ≥ λ y (1− β) δ D

d
≥ λx δ2

2 d
¯̀≥ λ δ2

4 d
¯̀ .

Case 1b. At least ε/2 but at most 1/2 agents utilize δ-
expensive strategies. Then, the virtual potential gain of the
agents leaving δ-expensive strategies is at least

V ≥
X
P∈P+

fP
X
Q/∈P+

µPQ(`P − `Q)

≥ λ
X
P∈P+

fP
X
Q/∈P+

„
(1− β)fQ +

β

|P|

«
(`P − `Q)2

d `P
.

Omitting the term β/|P|, substituting `P ≥ ¯̀ + δ ¯̀ and
(1 − β) ≥ 1/2 and applying Jensen’s inequality to the last
sum yields

V ≥ λ

2 d ¯̀

X
P∈P+

fP

0@ X
Q/∈P+

fQ(¯̀+ δ ¯̀− `Q)

1A2

≥ λ

2 d ¯̀

X
P∈P+

fP

0@(¯̀+ δ ¯̀)
X
Q/∈P+

fQ −
X
Q/∈P+

fQ`Q

1A2

Note that
P
Q/∈P+ fQ`Q ≤ ¯̀P

Q/∈P+ fQ since the sum

omits the terms of the expensive strategies Q ∈ P+. Hence,

V ≥ λ δ2 ¯̀2

2 d ¯̀

X
P∈P+

fP

0@ X
Q/∈P+

fQ

1A2

≥ λ (ε/2)(1− 1/2)2 δ2

2 d
¯̀ .

In the last inequality we used the above assumption thatP
Q/∈P+ fQ ≤ 1/2.

Case 2. At least ε/2 agents utilize δ-cheap paths.
Case 2a. At least a fraction of x ≥ 1/2 agents utilizes
δ-cheap paths. This case is symmetric to case 1a. Let y > 0
denote the fraction of agents utilizing paths with latency
at least ¯̀. Consider a random agent that is activated in a
round and let Y denote the random variable that represents
its current latency. Let D = E[Y − ¯̀ | Y ≥ ¯̀] denote the
conditional expectation of the difference by which Y exceeds
¯̀. The proof is now identical to case 1a and again yields

V ≥ λ δ2

4 d
¯̀ .



Case 2b. At least ε/2 but at most 1/2 agents utilize δ-cheap
strategies. We can treat the virtual potential gain of agents
moving towards δ-cheap strategies in a way similar to case
1b.

V ≥
X
Q/∈P−

fQ
X
P∈P−

µQP (`Q − `P )

≥ λ
X
P∈P−

„
(1− β)fP +

β

|P|

« X
Q/∈P−

fQ
(`Q − `P )2

d `Q
.

Now, we use that `P ≤ ¯̀− δ ¯̀ and apply Jensen’s inequality.

V ≥ λ

2 d ¯̀

X
P∈P−

fP

0@ X
Q/∈P−

fQ(`Q − ¯̀+ δ ¯̀)

1A2

≥ λ

2 d ¯̀

X
P∈P−

fP

0B@ X
Q/∈P−

fQ`Q + (δ ¯̀− ¯̀)
X
Q/∈P−i

fQ

1CA
2

≥ λ δ2 ¯̀2

2 d ¯̀

X
P∈P−

fP

0@ X
Q/∈P−

fQ

1A2

≥ λ (ε/2)(1− 1/2)2 δ2

2 d
¯̀ .

In all four cases we have V ≥ λ ε δ2 ¯̀

16 d
. Due to Lemma 4 and

Fact 2, the true potential gain is

∆Φ ≤ −V ≤ −λ ε δ
2

32 d
Φ.

Let Φ(t) denote the potential in the t-th round. Then,

Φ(t) = Φ(finit) ·
„

1− λ ε δ2

32 d

«t
.

Since Φ is lower bounded by Φ∗ we obtain the desired
upper bound on the number of unbalanced phases.

3.2 Approximation of the Potential
Since δ-ε-equilibria are transient we are interested in ap-

proximations of the potential. If Φ∗ = 0, the potential cannot
be approximated up to a relative factor of (1 + ε) unless ex-
actly optimized. We therefore allow an additional deviation
by an additive term ε α, i. e., we want to reach a population
with potential at most Φ(f) ≤ (1 + ε) Φ∗ + ε α. As discussed
above, this is equivalent to adding a virtual constant latency
α to every path. We will start with several lemmas that can
be applied to symmetric games in general and proceed by
analyzing the single-resource case and the general symmetric
case separately.

First we show, that the value of the average ¯̀=
P
e∈E `e fe

does not change much within one round unless the potential
does also decrease significantly.

Lemma 7. Consider a symmetric routing game and a flow
at δ-ε-equilibrium. If the (α, β)-exploration-replication policy
changes the average latency ¯̀ in one round by ∆ > 10λ ·(2 ε+
2 δ+β) ¯̀, it reduces the potential Φ by at least ∆/(10 (d+1)).

Due to space limitations we defer the proof to the full version.

Our analysis of the time of convergence will proceed by
constructing a flow vector in which the latencies of the cheap-
est path and the most expensive used path are close to the
average latency. The following theorem shows that such
a configuration in which all strategies deviate by no more
than a fixed fraction of ¯̀ from the average latency of their
commodity, are also approximations of the optimal potential.

Definition 5 (δ-equilibrium). A population vector f
is at a δ-equilibrium if for every commodity i ∈ [k] and for
every P ∈ Pi it holds that `P (f) ≥ ¯̀

i − δ ¯̀ and, in addition,
if fP > 0, `P (f) ≤ ¯̀

i + δ ¯̀.

Lemma 8. For every instance and feasible flow vector f
at a δ-equilibrium, Φ(f)/Φ∗ ≤ 1 +O (δ d).

Proof. Consider the δ-equilibrium flow f for the instance
Γ. For every i ∈ [k] let `max,i = maxP∈Pi,fP>0 `P (f). We
extend every strategy P ∈ Pi by a new resource with constant
latency δP = `max,i(f)− `P (f). Since f is at a δ-equilibrium,
we can be sure that δP ≤ 2 δ ¯̀. Let Γ′ denote the thus
obtained network. Since in Γ′ all latencies of used strategies
are equal, f is a Wardrop equilibrium in Γ′ with ΦΓ′(f) ≥
ΦΓ(f).

Now, consider the minimal potential in Γ, denoted by Φ∗Γ.
We have to show that ΦΓ′(f) ≤ Φ∗Γ + 2 δ ¯̀ since this and
Fact 2 imply that ΦΓ(f) ≤ Φ∗Γ + 2 δ (d + 1) ΦΓ(f) which
is the assertion of our theorem. To see the claim, note
that for every f̃ it holds that ΦΓ′(f̃) ≤ ΦΓ(f̃) + 2 δ ¯̀. Also,

the constraints for f̃ under which ΦΓ′ and ΦΓ are to be
minimized are identical, i. e., every f̃ feasible for Γ is also
feasible for Γ′ and vice versa. By optimality of f in Γ′,
we have ΦΓ′(f) ≤ ΦΓ′(f̃) ≤ ΦΓ(f̃) + 2 δ ¯̀ for any f̃ and

specifically for an f̃ that satisfies ΦΓ(f̃) = Φ∗Γ.

There exist instances showing that the parameters δ and d
in Lemma 8 are actually required.

3.2.1 Symmetric Single-Resource Games
For the case in which every strategy utilizes only one

resource, i. e., for all P ∈ P, |P | = 1, we can now show
convergence towards potential approximations.

Lemma 9. Consider a symmetric single-resource instance
Γ and the (0, β)-exploration-replication-policy. For every
ε > 0 define the following constants.

δ = max
nc ε
d
, c β

o
,

δ′ = ε′ = c′
δ2

d log(|P|/β)
, and

T = c′′
d

δ
log

„
ε′ d |P|
δ β

«
,

where c, c′ and c′′ are positive constants independent of ε, β,
and d. Then, in every phase consisting of T rounds starting
with a flow vector f0, there exists a round t ∈ {1, . . . , T}
with flow vector f(t) that satisfies one of the following three
properties.

(1) The population f(t) is not at a δ′-ε′-equilibrium or

(2) the potential decreases by at least 2 δ′

d+1
¯̀(f0), i. e., Φ(f0)−

Φ(f) ≥ 2 δ′

d+1
¯̀(f0) or



(3) the population is a (1 + ε)-approximation of the optimal
potential, i. e., Φ(f(t)) ≤ (1 + ε)Φ∗.

Let us give an intuition of the proof. Unless the phase con-
tains a round t satisfying property (2), we can use Lemma 7
to fix the value of the average within a small interval around
its initial value throughout the phase. Then we can par-
tition the paths into categories according to their latency.
The first category contains all paths with latency at most
(1− δ) ¯̀(f0). We show that within one phase, paths do not
change to the first category from any other category. This
is, because the load of paths in the other categories is either
increasing or their latency is too large to drop to at most
(1 − δ) ¯̀(f0) within one round. Therefore, the total load
on δ-cheap paths must grow exponentially implying that we
quickly reach a configuration f(t) which is either not a δ′-ε′-
equilibrium any more (i. e. f(t) satisfies property (1)) or f(t)
is a δ-equilibrium, which, together with Lemma 8, implies
that property (3) is satisfied. Due to space limitations we
leave the proof for the full version.

Theorem 10. Consider a symmetric single-resource in-
stance Γ and an initial flow vector finit. If β ≤ ε/d, the
(α, β)-exploration-replication-policy generates a configuration
with potential Φ ≤ (1 + ε)Φ∗ + ε α in at most

O
„
d12

ε7
log4

„
|E|
β

«
log

„
Φ(finit) + α

Φ∗ + α

««
rounds.

Proof. Again, by Fact 3, it is sufficient to prove the
theorem for the case α = 0 (see the first paragraph of the
proof of Theorem 6). Consider a phase of length T as defined
in Lemma 9. By Lemma 9, the phase terminates with one of
the following events after at most T rounds:

(1) The population is no longer at a δ′-ε′-equilibrium. By
Theorem 6, this can happen at most

T1 = O
„

d

ε′2δ′2
log

„
Φ(f0)

Φ∗

««
times.

(2) The potential decreases by at least 2δ′/(d + 1) ¯̀(f0).
This decreases the potential by a factor of at least
(1− 2 δ′/(d+ 1)). Therefore, this can happen at most

T2 = O
„
d

δ′
log

„
Φ(f0)

Φ∗

««
times.

(3) The policy has reached a (1 + ε)-approximation of the
potential.

Hence, after at most T ·max{T1, T2} rounds, event (3) must
occur.

3.2.2 General Symmetric Games
In the general symmetric case, a lemma similar to Lemma 9

holds with modified definitions of δ, ε, δ′, and T . We leave
the proof, which is more involved than in the symmetric case,
for the full version. The modified values imply the following
theorem:

Theorem 11. Consider a symmetric instance Γ and an
initial flow vector finit. If β ≤ ε2/(L3 d2), then the (α, β)-
exploration-replication-policy generates a configuration with
potential Φ ≤ (1 + ε)Φ∗ + ε α in at most

poly

„
d,

1

ε
, L

«
ln4

„
|E|
β

«
ln

„
Φ(finit) + α

Φ∗ + α

«
rounds.

Substituting Equation (1) for β, this yields the bound as
presented in Section 1.2. The proof is identical with the
proof of Theorem 10 with the modified definitions of δ, ε′,
δ′, and T . In addition, we use that |P| = O

`
|E|L

´
.

4. ASYMMETRIC GAMES
For the asymmetric, or multi-commodity, case, we general-

ize the bicriteria definition of approximate equilibria in the
following manner.

Definition 6 (δ-ε-equilibrium). For a flow vector f ,
for every commodity i ∈ [k], let P+

i (δ) = {P ∈ Pi | `P (f) ≥
¯̀
i(f) + δ ¯̀} denote the set of δ-expensive strategies and let
P−i (δ) = {P ∈ Pi | `P (f) ≤ ¯̀

i(f)− δ ¯̀} denote the set of δ-
cheap strategies. The population f is called a δ-ε-equilibrium
iff at most ε agents utilize δ-expensive and δ-cheap strategies.

The analysis of the time of convergence is slightly more
involved than in the symmetric case.

Theorem 12. Consider an asymmetric congestion game
Γ and an initial flow vector finit. For the (α, β)-exploration-
replication policy, the number of rounds in which the popula-
tion vector is not at a δ-ε-equilibrium w. r. t. Γ+α (as defined
in Fact 3) is bounded from above by

O
„

d

ε2 δ2
log

„
Φ(finit) + α

Φ∗ + α

««
.

In particular, this bound holds for α = β = 0 (and hence
Γ+α = Γ).

Proof (Sketch). As in the proof of Theorem 6, it is
sufficient to consider the case α = 0. Again, we estimate the
virtual potential gain V. Consider a path P ∈ P. There are
two cases.

1. `P > ¯̀·2/ε. By Markov’s inequality, at most a fraction
of ε/2 of the agents utilizes such paths. We ignore the
potential gain of these agents.

2. `P ≤ ¯̀ · 2/ε. The remaining 1 − ε/2 agents utilize
these paths. As long as we are not at a δ-ε-equilibrium,
there must be at least ε agents utilizing δ-expensive or
δ-cheap paths. Since at most ε/2 of them are in case 1,
at least ε/2 of them are in this case.

Throughout the proof we only consider agents of the second
case. For these agents, the proof is an extension of the proof
of Theorem 6. Consider commodity i.
Case 1. At least an ε/4-fraction of the agents utilizes δ-
expensive paths. First, fix one commodity i with total rate
ri.
Case 1a. In commodity i, at least ri/2 agents utilize δ-
expensive paths. As in case 1a of the proof of Theorem 6,



this yields an expected contribution to the virtual potential
gain of

Vi ≥
ri λ δ

2 ε

4 d
¯̀ .

Case 1b. The number of agents in commodity i utilizing
δ-expensive paths in commodity i is xi ≤ ri/2. With an
argument similar as in the proof of Theorem 6 we see that

Vi ≥
λ ε δ2 ¯̀

3 d
· xi(ri − xi)

2

r2
i

≥ xi
λ ε δ2 ¯̀

12 d

Now, summing up over all commodities, the virtual poten-
tial gain is

V ≥
X
i∈[k]

Vi

≥
X
i∈[k]

min


ri
λ δ2 ε ¯̀

4 d
, xi

λ ε δ2 ¯̀

12 d

ff

≥ λ ε δ2 ¯̀

12 d

X
i∈[k]

xi

≥ λ ε2 δ2 ¯̀

48 d
.

Here, the minimum is over the two cases 1a and 1b.
Case 2. Again, cases 2a and 2b are symmetric.

5. LOWER BOUNDS

5.1 Relative Slope is Necessary
In this section we show that the relative slope is the relevant

parameter in our analysis. We provide a lower bound that
shows that for a class L of latency functions the relative
slope d of L is a lower bound for the time of convergence
towards approximate equilibria if the rerouting policy is
monotone in the following sense. A policy is monotone for a
class of latency functions L if for every instance with latency
functions taken from L and for every feasible flow vector f ,
the policy does not increase the value of the potential in one
round. It is Markovian if the policy maintains no state and
the migration rates only depend on the current flow vector.

Theorem 13. For every d, there exists a class L of la-
tency functions with relative slope d together with an initial
flow vector f , such that any Markovian rerouting policy
monotone for L requires Ω(d/

√
ε) rounds in order to obtain

a (1 + ε) approximation to the optimum potential.

Proof. We choose a latency function ` : [0, 1] 7→ R≥0

and numbers x, y ∈ [0, 1],
√
ε ≤ x < y, such that the relative

slope of ` in the interval (x, y) is at least d. We define the
class L` := {` + a | a ∈ [0, `(1)]} ∪ {a | a ∈ [0, `(1)]} to
contain all constant latency functions in the interval [0, `(1)]
and all latency functions that can be obtained by adding a
constant from this interval to `.

Now, consider an instance with two strategies each consist-
ing of one resource with a constant latency function. Define
the latency function of the first resource as `1(f1) = L1 :=
`(y)/(1+

√
ε), and the latency function of the second resource

as `2(f2) = L2 := `(y). Clearly, the global optimum puts all
flow on resource one which results in a potential Φ∗ = L1.

Assume a starting configuration where the flows f1 and
f2 for the two strategies are f1 = 1 − y and f2 = y. The

potential of a flow vector f ′ is Φ(f ′) = L1 · f ′1 + L2 · f ′2. In
order to obtain a (1 + ε)-approximation to Φ∗ the flow f2

over resource 2 must drop from its initial value y to a value
less or equal to

√
ε.

Consider a configuration f ′ with f ′2 ∈ [x, y]. The rerouting
process must guarantee that it does not increase the potential
for all possible latency functions in L`. Since the process
is Markovian, it has no knowledge about `1 and `2 but can
only observe the values `1(f ′1) and `2(f ′2).

In particular, the process must assume that the latency
function of resource 2 is ˜̀(f2) = `(f2) + c where c ≥ 0 is

chosen such that ˜̀(f ′2) = L2. Since c ≤ L2 − L1 and since
the relative slope of ` at f ′2 is at least d, we know that the
relative slope of ˜̀ at f ′2 is at least d/2 in the interval [x, y].
Hence, the rerouting policy may move at most

∆ = O
„
`2 − `1
`1

1

d
f1

«
= O

„√
ε

d
f1

«
agents from strategy 2 to strategy 1. Since we started with a
population of y utilizing strategy 2, it takes at least (y−x)/∆
rounds until the population utilizing this strategy decreases
to below x.

The proof shows that the theorem actually holds for any
L containing at least one function ` that has relative slope d
on an interval of constant width plus all functions `+ c for
constants c > 0 and the constant functions.

5.2 Sampling with Static Probabilities is Slow
The following theorem shows that every rerouting policy

that samples with static probabilities that are independent
of the latency functions needs at least Ω(|P |) rounds to
approach a Wardrop equilibrium. We will formalize the
notion of static sampling probabilities in the following way.
If strategy P is sampled with static probability σP , at most
(1−fP )σP agents may migrate towards P in one round since
(1− fP ) agents utilize other paths. We say that a rerouting
policy has static sampling probabilities (for a set of strategies
P) denoted by (σP )P∈|P| with

P
P∈Pi

σP = 1 for all i ∈ [k],

if for every feasible flow vector f , every commodity i ∈ [k],
and every strategy P ∈ Pi it holds that the total volume
of flow that the policy shifts to strategy P in one round is
bounded from above by σP (ri − fP ).

Theorem 14. For every m, there exist a set of resources
E with |E| = m and strategy set P with |P| = 2m/4 such that
for every rerouting policy with static sampling probabilities
for P there exist a set of latency functions (`e)e∈E and an
initial population such that the rerouting policy needs at least
Ω(|P| log(1/ε)) rounds to reach a (1+ε)-approximation of the
optimal potential for the symmetric instance Γ = (E,P, (`e)).

Proof. Consider a directed network G = (V,E) with
node set V = {s, t, v1, . . . , vn, w1, . . . , wn}. The edge set
consists of the edges (s, v1), (s, w1), (w1, t), (wn, t) and, for
1 ≤ i < n, (vi, vi+1), (vi, wi+1), (wi, vi+1), and (wi, wi+1).

This network has m = 4n resources and |P| = 2n = 2m/4

paths. Edges in this network correspond to resources and
paths correspond to strategies.

Let (σP )P∈P be the vector of sampling probabilities cho-

sen by the rerouting policy and let P̃ be the strategy that
minimizes σP . Then, σP ≤ 1/|P|.

For e ∈ {(s, v1), (s, w1), (w1, t), (wn, t)}, let `e = 0. For
every resource e ∈ P with s, t /∈ e, let `e = 1. For all other



resources e′, let `e′ = n. Hence, strategy P̃ is the unique
optimal strategy with constant latency n− 1 and Φ∗ = n− 1.
All other strategies have latency at least 2n − 2. In order
to reach a (1 + ε) approximation of Φ∗, the population on

P̃ must be at least 1 − ε and hence the population on the
remaining strategies must be at most ε. By our choice of P̃ ,
we have

fP̃ (t+ 1) ≤ fP̃ (t) + (1− fP̃ (t))σP̃ ≤ fP̃ (t) +
1− fP̃ (t)

|P|

or, writing f̄P̃ = 1− fP̃ ,

f̄P̃ (t+ 1) ≥ f̄P̃ (t)− f̄P̃ (t)

|P| = f̄P̃ (t)

„
1− 1

|P|

«
.

Therefore, f̄P̃ (t) ≥ fP̃ (0) · (1− 1/|P|)t implying that it takes
Ω(|P| log(1/ε)) rounds until f̄P̃ (t) < ε and hence fP̃ ≥ 1− ε
if we choose fP̃ (0) > 0 constant.

6. OPEN PROBLEMS
Let us say that an agent is almost satisfied if her latency

is within a factor of 1 + δ of the average latency in the same
commodity. In the symmetric case, our bicriteria result for
the replication protocol has an intuitive interpretation: Rep-
lication approximately satisfies almost all agents very quickly.
Unfortunately, our definition of δ-ε-equilibria from Section 4
does not allow to extend this intuition to asymmetric games.
Can one obtain a similar result for the multi-commodity
case?

Is it possible to achieve a polynomial upper bound on the
time of convergence of the replication-exploration protocol
or a protocol of similar flavor w. r. t. the potential in the
multi-commodity case?

In a discrete setting, our replication-exploration proto-
col would require an exponential number of agents as the
strategy space can be exponentially large in the number of
resources. Is it possible to explore the large strategy space
in a distributed fashion with a smaller (polynomial) number
of agents?
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