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ABSTRACT
We prove the existence of ε-Nash equilibrium strategies with
support logarithmic in the number of pure strategies. We
also show that the payoffs to all players in any (exact) Nash
equilibrium can be ε-approximated by the payoffs to the
players in some such logarithmic support ε-Nash equilib-
rium. These strategies are also uniform on a multiset of loga-
rithmic size and therefore this leads to a quasi-polynomial al-
gorithm for computing an ε-Nash equilibrium. To our knowl-
edge this is the first subexponential algorithm for finding an
ε-Nash equilibrium. Our results hold for any multiple-player
game as long as the number of players is a constant (i.e., it
is independent of the number of pure strategies). A similar
argument also proves that for a fixed number of players m,
the payoffs to all players in any m-tuple of mixed strategies
can be ε-approximated by the payoffs in some m-tuple of
constant support strategies.

We also prove that if the payoff matrices of a two person
game have low rank then the game has an exact Nash equi-
librium with small support. This implies that if the payoff
matrices can be well approximated by low rank matrices,
the game has an ε-equilibrium with small support. It also
implies that if the payoff matrices have constant rank we
can compute an exact Nash equilibrium in polynomial time.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Economics, Theory
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1. INTRODUCTION
Non-cooperative game theory has been extensively used

to analyze situations of strategic interactions. Recently, it
has been pointed out [24, 14, 27] that many internet related
problems can be studied within the framework of this theory.
The most important solution concept in non-cooperative
games is the notion of Nash equilibrium.

In this paper we consider the following two issues concern-
ing Nash equilibria:

First, it is currently not known if Nash equilibria can be
computed efficiently. For two player games the known al-
gorithms [11, 12, 13, 15, 16, 17, 20] either have exponential
worst-case running time (in the number of available pure
strategies) or it is unknown whether they run in polynomial
time. For three player games, the problem seems to be even
more difficult. While for two player games it can be for-
malized as a Linear Complementarity Problem (and hence
some of the algorithms above) the problem for three player
games is a Non-linear Complementarity Problem. Further-
more there exist examples of small three player games with
rational payoff matrices in which all Nash equilibria are irra-
tional. Algorithms for approximating equilibria in multiple
player games (among others, [26, 33]) are also believed to be
exponential. The problem of computing Nash equilibria has
been of considerable interest in the computer science com-
munity and has been called one of the central open problems
in computational complexity (Papadimitriou [24]). In fact
it is known that the problem for two-person games lies in
some class between P and NP [23]. It is also known that
determining the existence of a Nash equlibrium with some
additional natural properties (e.g. maximizing payoff sum,
maximizing support) is NP-hard [5, 2]. For surveys on com-
putational issues of Nash equilibria see [32, 21].

A second and related issue is the need to play simple
strategies. Even if Nash strategies can be computed effi-
ciently, they may be too complicated to implement. This has
been pointed out, among others, by Simon [30] and later by
Rubinstein [28] in the context of bounded rationality. Play-
ers tend to prefer strategies as simple as possible. They
might prefer to play a sub-optimal strategy (with respect
to rationality) instead of following a complex plan of action
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which might be difficult to learn or to implement. In this pa-
per we consider normal form games and our notion of simple
strategies is strategies which are uniform on a small support
set. The importance of small support strategies becomes
clear if we consider the pure strategies to be resources. In
this case an equilibrium is almost impractical if a player has
to use a mixed strategy which randomizes over a large set
of pure strategies. The problem with the requirement of
small strategies, of course, is that there exist games whose
Nash equilibria are completely mixed (i.e., a player has to
randomize over all his available pure strategies).

We address both these problems (namely, the need for
efficient algorithms and the need for simple strategies), by
using the weaker concept of ε-equilibrium (strategies from
which each player has only an ε incentive to defect). More
precisely:

Our main result (Section 3) is that for any two-person
game there exists an ε-equilibrium with only logarithmic
support (in the number of available pure strategies). More-
over the strategy of each player in such an equilibrium is
uniform on a small multiset and can be expressed in polylog-
arithmically many bits. In our opinion, this is an interesting
observation on the structure of competitive behavior in var-
ious scenarios - namely, extremely simple approximate so-
lutions exist. This result directly yields a quasi-polynomial
(nO(ln n), where n is the number of available pure strategies)
algorithm for computing such an approximate equilibrium.
To our knowledge this is the first subexponential algorithm
for ε-equilibria. In addition to being small, our approximate
equilibria provide both players with a good payoff too: the
payoff that each player gets using these strategies is almost
the same as that in some exact Nash equilibrium. Finally,
our result holds not only for two person games but also for
games in which the number of players is independent of the
number of pure strategies. It is interesting to note that
although the problem of finding exact equilibria seems to
become more difficult in the “transition” from two player
games to three and more, this is not the case for approxi-
mate equilibria. Computing ε-equilibria is important since
they behave almost as well as exact Nash equilibria in several
scenarios. In Section 3.2 we provide an interesting example
based on the recent work by Vetta [31].

A second result (Section 3) is that if the players are al-
lowed to communicate and “sign treaties” then there are
constant support strategies which approximate the payoffs
that each player gets in an equilibrium (in fact there are
constant support strategies that approximate the payoffs of
any pair of strategies). In real life, such treaties are not un-
known (though often tacit) - this result can be considered as
an explanation of why certain small strategies behave well
and are used in real games, as opposed to a large and com-
plicated Nash equilibrium.

A third question we investigate is: “when does a game
have small support exact Nash equilibria?” In Section 4
we give a sufficient condition for two person games: if the
payoff matrices of the players have low rank then there ex-
ists a Nash equilibrium with small support. Our original
proof of this Theorem was a generalization of a result due
to Raghavan ([25]) which deals with completely mixed equi-
libria. The generalization was based on a careful Gaussian
elimination type step. However, we suspect that this Theo-
rem should not be unknown to the Game Theory community
as we have recently found simple proofs. We would still like

to bring the Theorem to the attention of the broader CS and
Economics community as it has some interesting corollaries
regarding the computation of Nash equilibria. We prove
that if the matrices can be well approximated by low rank
matrices, then there exists an approximate equilibrium with
small support. It also follows that if the payoff matrices have
constant rank, we can compute an exact Nash equilibrium
in polynomial time.

The problem of looking for small support equilibria has
been studied earlier. Koller and Megiddo [11] prove that for
two person games in extensive form there exist equilibrium
strategies whose support is at most the number of leaves of
the game tree. However, not all games can be represented in
the extensive form with a small number of leaves (where by
small we mean logarithmic in the number of pure strategies).
Our result guarantees the existence of equilibria with loga-
rithmic support for any two person normal form game (and
also for multiple players as stated above) but the equilibria
are only approximate.

It should be noted that since Nash equilibria are fixed
points of a certain map [22], ε-equilibria can be found using
Scarf’s algorithm [29], a general algorithm for finding ap-
proximate fixed points of continuous mappings. However, no
sub-exponential upper bounds are known for approximating
equilibria using this algorithm. In fact, Scarf’s algorithm
is known to take exponential time in the worst case for a
general fixed point approximation ([6]). Polymomial time
algorithms for exact or approximate equilibria but only for
special classes of games have also been obtained in [10, 19,
9].

For the class of two-person zero-sum games, results for
approximate minmax strategies have been proved indepen-
dently by Lipton and Young [18] and Althöfer [1]. In fact
the proofs of Section 3 use the same technique (sampling).
While [1] gives no details, the author claims that a simi-
lar result holds for non-zero sum two person games. The
implication from approximate minmax strategies to ε-Nash
equilibria which also approximate the payoffs in some exact
Nash equilibrium does not seem to be direct. Furthermore
our result holds for multiple player games too and not only
for bimatrix games, which is interesting because multiple
player games seem to be more difficult.

The rest of the paper is structured as follows: In Section 2
we give the relevant definitions. In Section 3 we prove our
main result. In Section 4 we prove that low rank payoff ma-
trices imply the existence of equilibria with small support.

2. NOTATION AND DEFINITIONS
Consider a two person game G, where for simplicity the

number of available (pure) strategies for each player is n. We
will refer to the two players as the row and the column player
and we will denote their payoff matrices byR,C respectively.
The results of Section 3 are also generalized for multiple
person games in which the players do not have the same
number of pure strategies.

A mixed strategy (or a randomized strategy) for a player
is a probability distribution over the set of his pure strate-
gies and will be represented by a vector x = (x1, x2, ..., xn),
where xi ≥ 0 and

�
xi = 1. Here xi is the probability that

the player will choose his ith pure strategy. If xi > 0 we say
that the mixed strategy x uses the ith pure strategy. The
support of x (Supp(x)) is the set of pure strategies that it
uses. A mixed strategy is called k-uniform if it is the uni-
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form distribution on a multiset S of pure strategies, with
|S| = k. For a mixed strategy pair x, y, the payoff to the
row player is the expected value of a random variable which
is equal to Rij with probability xiyj . Therefore the payoff
to the row player is (x,Ry), where (. , .) denotes the inner
product of two n-dimensional vectors. Similarly the payoff
to the column player is (x,Cy).

The notion of a Nash equilibrium [22] is formulated as
follows:

Definition 1. A pair of strategies x∗, y∗ is a Nash equilib-
rium point if:

(i) For every (mixed) strategy x̄ of the row player,
(x̄, Ry∗) ≤ (x∗, Ry∗), and

(ii) For every (mixed) strategy ȳ of the column player,
(x∗, Cȳ) ≤ (x∗, Cy∗)

Similarly we can define ε-equilibria (this definition is well
known in the literature):

Definition 2. For any ε > 0 a pair of mixed strategies
x′, y′ is called an ε-Nash equilibrium point if:

(i) For every (mixed) strategy x̄ of the row player,
(x̄, Ry′) ≤ (x′, Ry′) + ε and

(ii) For every (mixed) strategy ȳ of the column player,
(x′, Cȳ) ≤ (x′, Cy′) + ε

3. THE MAIN RESULT
For the present we assume that all entries of R and C are

between 0 and 1. Our main result is:

Theorem 1. For any Nash equilibrium x∗, y∗ and for any
ε > 0, there exists, for every k ≥ 12 ln n

ε2
, a pair of k-uniform

strategies x′, y′, such that:

1. x′, y′ is an ε-equilibrium,

2. |(x′, Ry′)− (x∗, Ry∗)| < ε, (row player gets almost the
same payoff as in the Nash equilibrium)

3. |(x′, Cy′)− (x∗, Cy∗)| < ε, (column player gets almost
the same payoff as in the Nash equilibrium)

Proof. The proof is based on the probabilistic method.
For the given ε > 0, fix k ≥ 12 lnn/ε2. Form a multiset A by
sampling k times from the set of pure strategies of the row
player, independently at random according to the distribu-
tion x∗. Similarly form a multiset B by sampling k times
from the pure strategies of the column player, independently
at random according to the distribution y∗.

Let x′ be the mixed strategy for the row player which
assigns probability 1/k to each member of A and 0 to other
pure strategies. Let y′ be the mixed strategy for the column
player which assigns probability 1/k to each member of B
and 0 to other pure strategies. Clearly, if a pure strategy
occurs α times in the multiset, then it is assigned probability
α/k.

Denote by xi the ith pure strategy of the row player, and
by yj the jth pure strategy of the column player. In order to
analyze the probability that x′, y′ is an ε-Nash equilibrium
it suffices to consider only deviations to pure strategies.

We define the following events:

φ1 = {| (x′, Ry′) − (x∗, Ry∗) |< ε/2}
π1,i = {(xi, Ry′) < (x′, Ry′) + ε}, (i = 1, ..., n)

φ2 = {| (x′, Cy′) − (x∗, Cy∗) |< ε/2}
π2,j = {(x′, Cyj) < (x′, Cy′) + ε}, (j = 1, ..., n)

GOOD = φ1 ∩ φ2

n�

i=1

π1,i

n�

j=1

π2,j

We wish to show that Pr[GOOD] > 0. This would mean
that there exists a choice of A and B such that the corre-
sponding strategies x′ and y′ satisfy all three conditions in
the statement of the theorem.

In order to bound the probabilities of the events φc
1 and

φc
2 we introduce the following events:

φ1a = {| (x′, Ry∗) − (x∗, Ry∗) |< ε/4}
φ1b = {| (x′, Ry′) − (x′, Ry∗) |< ε/4}
φ2a = {| (x∗, Cy′) − (x∗, Cy∗) |< ε/4}
φ2b = {| (x′, Cy′) − (x∗, Cy′) |< ε/4}

Note that φ1a ∩ φ1b ⊆ φ1. The expression (x′, Ry∗) is
essentially a sum of k independent random variables each of
expected value (x∗, Ry∗). Each such random variable takes
value between 0 and 1. Therefore we can apply a standard
tail inequality [7] and get:

Pr[φc
1a] ≤ 2e−kε2/8

Using a similar argument we have:

Pr[φc
1b] ≤ 2e−kε2/8

Therefore Pr[φc
1] ≤ 4e−kε2/8 and the same holds for the

event φc
2.

In order to bound the probabilities of the events π1,i’s and
π2,j ’s we define the following auxilliary events:

ψ1,i = {(xi, Ry′) < (xi, Ry∗) + ε/2}, (i = 1, ..., n)

ψ2,j = {(x′, Ryj) < (x∗, Ryj) + ε/2}, (j = 1, ..., n)

We can easily see that

ψ1,i ∩ φ1 ⊆ π1,i, (i = 1, ..., n)

ψ2,j ∩ φ2 ⊆ π2,j , (j = 1, ..., n)

Using the Hoeffding bound again we get:

Pr[ψc
1,i] ≤ e−kε2/2

Pr[ψc
2,j ] ≤ e−kε2/2

Now by combining the above equations we see that:

Pr[GOODc] ≤ Pr[φc
1] +Pr[φc

2] +

n�

i=1

Pr[πc
1,i] +

n�

j=1

Pr[πc
2,j ]

≤ 8e−kε2/8 + 2n[e−kε2/2 + 4e−kε2/8] < 1

Thus Pr[GOOD] > 0.
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Note that not only do the strategies x′, y′ form an ε-
equilibrium, but they also provide both players a payoff
ε-close to the payoffs they would get in some Nash equilib-
rium. In fact, the payoffs of every Nash equilibrium can be
thus approximated by a small strategy ε-equilibrium. This
provides another incentive for the players to remain in the
ε-Nash equilibrium. Furthermore x′, y′ are k-uniform, which
implies the following corollary:

Corollary 1. For a 2-person game, there exists a quasi-
polynomial algorithm for computing all k-uniform ε-equilibria
(by Theorem 1 at least one such equilibrium exists).

Proof. Given an ε > 0, fix k = 12 ln n
ε2

. By an exhaus-
tive search, we can compute all k-uniform ε-equilibria (by
Theorem 1 at least one such equilibrium exists; verifying ε-
equilibrium condition is easy as we need to check only for
deviations to pure strategies). The running time of the algo-

rithm is quasi-polynomial since there are
�

n+k−1
k

�2
possible

pairs of multisets to look at.

To our knowledge this is the first subexponential algo-
rithm for finding an approximate equilibrium. Furthermore,
given the payoffs of any Nash equilibrium the algorithm can
find an ε-Nash equilibrium in which both players receive
payoffs ε-close to the given values.

When the entries of R and C are not between 0 and 1
the ε incentive to defect and the ε change in payoff both
get magnified by Rmax − Rmin for the row player and by
Cmax − Cmin for the column player. Here Rmax and Rmin

denote the maximum and minimum entry of R, and similarly
for C. Additionally if the players do not have the same
number of pure strategies (say n1, n2) then the same result

holds with k ≥ 12 ln max{n1,n2}
ε2

.
Our results can also be generalized to games with more

than two players. In particular for an m-person game:

Theorem 2. Let s∗1, ..., s
∗
m be a Nash equilibrium in an

m-person game. Let p∗1, ..., p
∗
m be the payoffs to the players

in the Nash equilibrium. Then for any ε > 0, there ex-

ists, for every k ≥ 3m2 ln m2n
ε2

, a set of k-uniform strategies
s′1, s

′
2, ..., s

′
m, such that:

1. s′1, s
′
2, ..., s

′
m is an ε-equilibrium,

2. |p′i − p∗i | < ε for i = 1, ..., m

where p′1, ..., p
′
m are the payoffs to the players if they play

strategies s′i.

As we see from Theorem 2 we can guarantee an
ε-equilibrium with logarithmic support only when m is inde-
pendent of n. It seems to us that the technique of sampling
cannot help us prove a more general theorem than that. It
is an interesting question to see whether this can be done us-
ing a different technique. However, it is still interesting that
we can prove the existence of simple approximate equilibria
even for three player games. This is so because the problem
of finding exact equilibria for three player games seems to be
much more difficult than for two player games due to irra-
tional equilibria and non-linearity of the Complementarity
Problem.

Corollary 1 also generalizes to games with a constant num-
ber of players since in this case the number of combinations
of multisets that the algorithm has to look at is still quasi-
polynomial . Again it would be interesting if a more general
result could be proved.

3.1 Approximating Payoffs of Nash equilibria
with Constant Support

In terms of the size of the support we can do much better,
if we have weaker requirements. There may be applications
in which we would not even insist on an approximate equi-
librium. All we would care for is to approximate the payoffs
in an actual Nash equilibrium. The next result is in that
direction:

Theorem 3. For any Nash equilibrium x∗, y∗ and any
ε > 0, there exists, for every k ≥ 5/ε2, a pair of k-uniform
strategies (x, y), such that

1. |(x,Ry) − (x∗, Ry∗)| < ε (row player gets almost the
same payoff), and

2. |(x,Cy) − (x∗, Cy∗)| < ε (column player gets almost
the same payoff),

Again this result can be generalized to multiple player
games. For an m-person game the support of the k-uniform
strategies will be O(m2 lnm).

Theorem 3 establishes the existence of constant support
strategies which approximate the payoffs that both players
get in a Nash equilibrium. The techniques used to prove
this are the same as those used to prove Theorem 1, and
the proof is omitted. Again, we assume that the entries of
R and C are between 0 and 1 (in the general case we get a
magnification by Rmax −Rmin and Cmax −Cmin as before).
Note that Theorem 3 is true for any pair of strategies x∗, y∗,
not necessarily for Nash equilibria.

A situation in which this result could be applicable is the
following: Consider a game between two players both having
a very large number of pure strategies at their disposal. Let
v1, v2 be the payoffs in a Nash equilibrium to the row and
column player respectively. If the support of the equilibrium
strategies is very big, then it would be preferable for both
players to sign a “bilateral treaty” and use only a small
number of strategies, as provided by the result. In that
case, both players would still receive a payoff close to v1
and v2 respectively, while using a small number of strategies.
Furthermore, each player will be able to check, during the
game, if the other player has violated the treaty, in which
case he can switch to any other strategy.

3.2 An Interesting Application
The fact that we can compute ε-equilibria in quasi polyno-

mial time is very important, as they are “almost as good as”
exact equilibria in several scenarios. Thus the difficulty in
computing exact equilibria can be conveniently sidestepped.
As an example we note the recent result of Vetta [31] on the
social performance of Nash equilibria. This line of research
was initiated by Koutsoupias and Papadimitriou [14]. The
setting is a multi-player game together with a social utility
function. In this scenario we would like to know how subop-
timal a Nash equilibrium can be in terms of maximizing the
social utility function. Results of this flavor for traffic rout-
ing problems were given in [3, 14, 27]. Vetta [31] proves that
in any valid utility system with a non-decreasing and sub-
modular social utility function, any Nash equilibrium yields
at least half of the social optimum.

In this context the fact that we can compute ε-equilibria in
quasi-polynomial time can be useful. In particular a simple
generalization of the proof of Theorem 3.4 in [31] to ε-Nash
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equilibria together with our Corollary 1 gives the following
result (for details and definitions see [31]):

Corollary 2. Consider a valid utility system with a non-
decreasing submodular utility function. Let OPT be the max-
imum value of the utility function. Then, we can compute
in time quasi-polynomial in the number of pure strategies,
a set of mixed strategies which form an ε-Nash equilibrium
and which provide a social payoff P , s.t P ≥ 1/2OPT −mε,
where m is the number of players.

4. LOW RANK IMPLIES SMALL SUPPORT
EXACT EQUILIBRIA

In this section we investigate the question: when does a
two person game have small support exact Nash equilibria?
We show that if the payoff matrices have low rank then the
game has a small support Nash equilibrium. Furthermore
we show that if the payoff matrices can be approximated
by low rank matrices then the game has a small support
approximate equilibrium (where the approximation factor
depends on how well the matrices can be approximated).

Denote again by R,C the payoff matrices for the row and
column player respectively. Suppose that R and C are m×n
matrices.

Theorem 4. Let x∗, y∗ be a Nash equilibrium.
If rank(C) ≤ k, then there exists a mixed strategy x for the
row player with |Supp(x)| ≤ k+1 such that x, y∗ is an equi-
librium point. Similarly, if rank(R) ≤ k, then there exists a
mixed strategy y for the column player with |Supp(y)| ≤ k+1
such that x∗, y is an equilibrium point. Furthermore the pay-
off that both players receive in the equilibria x, y∗ and x∗, y
is equal to the payoff in the initial equilibrium x∗, y∗.

Our original proof of this Theorem was a generalization
of a result due to Raghavan ([25]) which deals with “com-
pletely mixed equilibria”, i.e. equilibria which use all the
pure strategies. The generalization was based on a careful
Gaussian elimination type step. However, we suspect that
this Theorem should not be unknown to the Game The-
ory community as we recently realized that a simple proof
follows from the polyhedral structure of the problem and
the polyhedral structure of the set of Nash equilibria (see
[32, 8]). We would still like to bring the theorem to the at-
tention of the broader CS and Economics community as it
has some interesting corollaries regarding the computation
of Nash equilibria. We present below another simple proof
suggested to us by N. Vishnoi and N. Devanur ([4]):

Let S be the k-dimensional space spanned by the columns
of R. Since Ry∗ is a convex combination of the columns of
R, it can be written as a convex combination of at most k+1
columns of R (by Caratheodory’s Theorem). Let this new
convex combination be Ry. Note that Supp(y) ⊆ Supp(y∗).
This implies that y is a best response to x∗. Since Ry∗ =
Ry, x∗ is also a best reponse to y. Hence x∗, y is a Nash
equilibrium. Since Ry∗ = Ry the first player receives the
same value in x∗, y as in x∗, y∗. The second player will also
receive the same value as in the initial equilibrium because
Supp(y) ⊆ Supp(y∗).

Definition 3. For n× n matrices C,D, D is an
ε-approximation of C if C = D + E, where |Eij | ≤ ε for
i, j = 1, ..., n.

Lemma 1. Let D be an ε-approximation of C. Let x∗, y∗

be a Nash equilibrium for the game with payoff matrices
R,D. Then x∗, y∗ is a 2ε-Nash equilibrium for the game
with payoff matrices R,C.

Proof. Clearly (x∗, Ry∗) ≥ (x̄, Ry∗), ∀ x̄. For any strat-
egy ȳ:

(x∗, Cy∗) = (x∗,Dy∗) + (x∗, Ey∗) ≥ (x∗,Dȳ) + (x∗, Ey∗)

Since |Eij | ≤ ε, ∀ i, j,
(x∗, Eȳ) − (x∗, Ey∗) ≤ 2ε

Hence,

(x∗, Cy∗) ≥ (x∗, Dȳ) + (x∗, Eȳ) − 2ε = (x∗, Cȳ) − 2ε

Corollary 3. For any game R,C, and for any k < n, if
C can be ε-approximated by a rank k matrix then there exists
a 2ε-equilibrium x, y with |Supp(x)| ≤ k + 1. Similarly for
R.

In particular, we can use the Singular Value Decomposi-
tion to approximate the payoff matrices R,C by rank k ma-
trices for any k. The approximation factor ε of Corollary 3
is then a function of the singular values of the matrices.

A useful corollary arises from the observation that for 2-
person games, if we know the support of a Nash equilib-
rium, then we can compute the exact equilibrium strategies
in polynomial time. This is because an equilibrium strategy
y for the column player equalizes the payoff that the row
player gets for every pure strategy in his support and vice
versa. Hence we can write a linear program and compute
the Nash equilibrium with the given support. The following
is a direct consequence of this observation and Theorem 4.

Corollary 4. If the payoff matrices R,C have constant
rank, then we can compute an exact Nash equilibrium in
polynomial time. In particular if one of the players has a
constant number of pure strategies, we can compute a Nash
equilibrium in polynomial time.

5. DISCUSSION
Another attempt to prove the results of Section 3 would

be to approximate the vectors of a Nash equilibrium by vec-
tors of small support. It is not difficult to see that we can
approximate any probability distribution vector by a vector
of logarithmic support in the l∞ norm with error at most
1/ log n. However, approximating an equilibrium x∗, y∗ in
this manner does not imply that the approximating vectors
will form an ε-equilibrium, for any given fixed ε. On the
other hand it can be shown that an ε-approximation in the
l1 norm does yield an ε-equilibrium, but such an approxi-
mation is not always possible (e.g. if the Nash strategies are
the uniform distributions).

An interesting open question is whether we can generalize
the results of Section 3 to games where the number of players
is an increasing function of n. Another question would be
to generalize the result so that the incentive to defect won’t
depend on the range of the payoff matrices (which can be
much higher than the expected payoff in any equilibrium).
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