The Complexity of Pure Nash Equilibria *

Alex Fabrikant Christos Papadimitriou Kunal Talwar

Abstract

We investigate from the computational viewpoint multi-player games that are guaranteed
to have pure Nash equilibria. We focus on congestion games, and show that a pure Nash
equilibrium can be computed in polynomial time in the symmetric network case, while the
problem is PLS-complete in general. We discuss implications to non-atomic congestion games,
and we explore the scope of the potential function method for proving existence of pure Nash
equilibria.

1 Introduction

As the ice separating Game Theory from Theoretical Computer Science is melting, some of the
fundamental results in Game Theory come under increased complexity-theoretic scrutiny — chief
among them the important classical existence theorem due to Nash [11]. Nash’s proof that every
game has a randomized Nash equilibrium is non-constructive in the polynomial sense. The prob-
lem of computing a randomized Nash equilibrium is among the “inefficient proofs of existence”
identified in [13], lying, together with Brouwer fixed points, in the class PPAD (for “polynomial
parity argument, directed version”) — but, unlike Brouwer’s problem, Nash’s is not known to be
PPAD-complete. The two-person case is known to be delightfully combinatorial, but again with an
exponential catch (see the exposition in [19] and the recent exponential construction [16]). We now
have a clever algorithm for finding approximate Nash equilibria in sub-exponential time [8], while
it is known that any twist of the problem quickly makes it NP-hard (see [1] for a unifying proof).

Given the apparent difficulty of finding a randomized Nash equilibrium (let alone the criticism
that the concept of randomized strategies has attracted within Game Theory), it is natural to ask
what kinds of games possess a pure Nash equilibrium.

This is the question that motivates the present work: Which games have pure Nash equilibria?
And under what circumstances can we find such in polynomial time? We immediately note that,
for such a problem to be computationally meaningful, the number of players should be large, and
the payoff table must be given in some implicit way (because otherwise exhaustive search of the
entries of the payoff table does the trick).

There is a famous and well-studied class of games (and, in fact, one with obvious affinity to
networks) that is guaranteed to have pure Nash equilibria: the congestion games. Figure 1 shows
a congestion game in the setting of networks: three players want to move one unit of low between
designated endpoints of a network by choosing one path each. The cost of each combination of
path choices to each player is calculated by adding the delays of the edges of the path chosen,
where the delay of an edge depends on the number of players using this edge (given here as an

*Computer Science Division, UC Berkeley, CA 94720. {christos, alexf, kunal}@cs.berkeley.edu. Research partially
supported by NSF ITR Grant, and by a Hertz Foundation fellowship.

A,B,C

AB,.C

Figure 1: A network congestion game: three players are picking paths from S to 7. Each edge is
labeled with per-player delays when used by 1, 2, and 3 players.

explicit function). In the present example, if Player A chooses the path SXYT, B chooses SXT,
and C chooses SYT, then the costs to the players are 9, 5, and 9 respectively. This is not a Nash
equilibrium, because C can defect profitably to path SXT'.

In a classical paper [14], Rosenthal proves that, in any such game, “the Nash dynamics con-
verges” (i.e., the directed graph with action combinations as nodes and payoff-improving defections
by individual players as edges is acyclic), and hence the game has pure Nash equilibria (the sinks of
the graph). The proof, outlined in Section 2, is based on a simple potential function. This existence
theorem, however, again leaves open the question, does a polynomial-time algorithm for finding
pure Nash equilibria in congestion games exist?

We show that the answer is positive when all players have the same origin and destination
(the so-called symmetric case, Theorem 2); a pure Nash equilibrium is found by computing the
optimum of Rosenthal’s potential function, through a reduction to min-cost flow. However, we show
(Theorem 3) that computing a pure Nash equilibrium in the general network case is PLS-complete
[6], which means intuitively “as hard to compute as any object whose existence is guaranteed by
a potential function” (see Section 2 for the precise definition). Our proof has as corollary the
existence of examples with exponentially long shortest paths, as well as the PSPACE-completeness
of the problem of finding a Nash equilibrium reachable from a specified state. The completeness
proof is complicated, as it requires the reworking of the reduction, due to [17], to the problem of
finding local optima of weighted MAX2SAT instances (possibly the most complex reduction in the
literature, if one excludes PCP). When congestion games are posed in the abstract (in terms of sets
of resources instead of paths in a network, this being the original formulation), Nash equilibria are
PLS-complete to find even in the symmetric case.

Our algorithm for pure Nash equilibria has an application to the non-atomic congestion games
studied by Roughgarden and Tardos [15], in which delays are continuous functions. We show that,
under the necessary smoothness assumptions, we can approximate the Nash equilibria of such games
in strongly polynomial time (Theorem 4).

What other games can be shown to have Nash equilibria by potential functions? Monderer and
Shapley [10] have provided an early and devastating answer: only for (inconsequential generaliza-
tions of) congestion games can we have a function ¢(s) of the state such that for each defection by
a player from s to s’ the improvement to the payoff of this player is precisely ¢(s’) — @(s).

Consider, however, the party affiliation game: n players have two actions (“parties”) {—1,1} to

choose from and the payoff for i of choices (s1,...,s,) is sgn(}_; s; - sj - wi;), where wj; are given
symmetric integer weights (positive or negative). Intuitively, people are happy when they are in
the same party as their friends, and at different parties than their enemies, and the weights capture
the warmth of the relationship between two people. It is easy to see that in this game the Nash
dynamics converges, and the function ¢(s) = 2_ij Si* 8- wij can serve as a potential function in a
sense. And still, this game is definitely not a congestion game (it is easy to see that it is a local
optimality version of the MAX CUT problem, and related to the convergence of Hopfield neural
networks), in apparent contradiction with the negative result of [10]. What is going on?

There is a weakness in the negative result of [10]: the requirement that the two differences be
the same is far too strict; they need only have the same sign for ¢ to be a valid potential function
for the purposes of local search; we will refer to this as a general potential function. We show
(Theorem 6) that, under the relaxed definition, the space of “potential games” is much richer,
essentially encompassing all of the class PLS: any problem in PLS can be coached as a game whose
pure equilibria are guaranteed to exist by a potential function argument.

Finally, in Section 5 we discuss several open problems, the most general and important of which
is understanding better the nature of games that are guaranteed to have pure Nash equilibria; we
also review some other known classes of such games, proving more general results in some cases.

2 Definitions and Notation

Games. A game with n > 2 players is a finite set of actions S; for each player, and a payoff
function u; for each player mapping S1 X - - - X S, to the integers. The elements of Sy x --- x S, will
be called action combinations or states. A (pure) Nash equilibrium is a state s = (s1,...,S,) such
that for each i u;(sy,...,Si,...,50) > wi(s1,...,8,,...,8p) for any s, € S;. In general a game may
not have pure Nash equilibria. (However, Nash proved [11] that if we extend the game to include
as strategies for ¢ all possible distributions on S;, with the obvious extension of the u;’s to capture

expectation, then an equilibrium is guaranteed to exist.)

A game is symmetric if all S;’s are the same, and all u;’s, considered as a function of the choices
of the other players, are identical symmetric functions of n — 1 variables.

Consider a graph with node set S; X --- x S}, and an edge (s,s’) whenever s and s’ differ only
in one component, say the ith, and u;(s") > w;(s). If this graph is acyclic then we say that, for this
game, the Nash dynamics converges.

Proposition 1 If the Nash dynamics converges, then there is a pure Nash equilibrium.

Sketch: The sinks of the graph are precisely the Nash equilibria of the game.]

Congestion Games. We shall consider games in which the u;’s are given implicitly in terms of
efficient algorithms computing the utilities based on the input and the state. For example, in a
congestion game the input is a set of n players, a finite set F of resources, and the action sets are
S; C 2¥; we are also given the delay function d mapping E x {1,...,n} to the integers. d.(j) is
nondecreasing in j. The payoffs are computed as follows. Let s = (s1,...,8,) be a state, and let
fs(e) = [{i : e € si}|. Then ci(s) = —ui(s) = X.cs, de(fs(e)). Intuitively, each player chooses a
set of resources (from among the sets available to her), and to compute the cost incurred by i (the
negative of her payoff) we add the delay of each resource used by i, where the delay of a resource
e depends on the congestion fs(e), the total number of players using e.

In a network congestion game the families of sets S; are presented implicitly as paths in a
network. We are given a network (V| F), two nodes a;,b; € V for each player i and again a delay
function with the edges playing the role of the resources. The subset of E available as actions to
the player i is the set of all paths from a; to b;. We shall assume the network is directed.

Theorem 1 (Rosenthal, [14]) Every congestion game has a pure Nash equilibrium.

Proof: The potential function establishing the result is ¢(s) = >, ijsz(f) de(7). For the proof,
reverse the summations: ¢(s) = iy Y.c,. de(fS'(€)), where by f='(e)) we denote the total
number of players j < i using e. Suppose now that (s,s’) is an improving defection, and suppose
(without loss of generality, since players were ordered arbitrarily) that the defecting player is n.
Then ¢(s') — $(5) = Sucs, de(f5(0)) = Tecs, delfE(€)) = Tucn, dolfr (€)) = Tees, del(fole)) =
¢i(s") — ¢i(s). Hence, ¢ decreases along all edges of the Nash dynamics graph, and hence the Nash
dynamics converges. O

Notice that ¢(s) has no intuitive interpretation as “social welfare” or as any related notion; it
just accurately absorbs progress, as a potential function should.

PLS. A problem in PLS [6] is given by (a) a set of instances I = ¥*; (b) for each instance z € I
a set of feasible solutions F, C XP(7): (c) a polynomial oracle ¢ which, given z € I and s € $P()
determines whether s € F, and, if so, computes an integer c(z,s) — the cost of s (to simplify
matters we assume minimization); and (d) for each z € I, s € F, a neighborhood N, (s) C Fy; and
a polynomial function g which, on input z € I and s € F, returns an s’ € N,(s) with ¢(s") < ¢(s),
or, if no such s’ exists, returns “no”. An instance of the PLS problem is this: “Given z € I, find

a local optimum, that is, an s € F, such that g(s) = “no”.”

Since the introduction of this class in [6], many local search problems were shown PLS-complete,
including weighted versions of satisfiability, aspects of graph bisection, and the traveling salesman
problem [7, 17, 12]. PLS-completeness results are proved in terms of PLS reductions, providing
also a mapping from local optima of the target problem to local optima of the original. Let us
immediately note that, by the proof of Rosenthal’s Theorem above, finding a pure Nash equilibrium
for a congestion game is in PLS, as it is equivalent to finding a local optimum of ¢, where the feasible
solutions are all states. Notice that this does not imply a polynomial algorithm, since improvements
of ¢ can be small and exponentially many. It is a standard observation that problems in PLS have
a PTAS (by appropriately rounding the potential function, and re-rounding after enough steps if
necessary to retain accuracy, the improvements become coarse enough, and thus guaranteed to end
before too long). However, this does not immediately imply a PTAS for finding e-Nash equilibria,
as approximation of the potential does not imply approximation of the individual player’s cost.

In the next section we characterize the complexity of computing pure Nash equilibria in con-
gestion games.

3 The Complexity of Congestion Games

The Algorithm

A network potential game is symmetric if all players have the same endpoints ¢ and b (and thus
they all have the same set of paths/strategies).

Theorem 2 There is a polynomial algorithm for finding a pure Nash equilibrium in symmetric
network congestion games.

Proof: The algorithm computes the optimum of ¢(s); since the optimum is also a local optimum,
the resulting state s is a pure Nash equilibrium.

The algorithm is a reduction to min-cost flow. Given the network N = (V, E, a, b) and the delay
functions d., we replace in N each edge e with n parallel edges between the same nodes, each with
capacity 1, and with costs d¢(1),...,d.(n). It is easy to see that any (integer) min-cost flow in the
new network is a state of the game that minimizes ¢(s).]

As we shall see soon (Theorem 4) this simple algorithmic idea has implications for non-atomic
congestion games.

PLS-completeness

In contrast, all three other cases of congestion games are PLS-complete:

Theorem 3 It is PLS-complete to find a pure Nash equilibrium in network congestion games of
the following sorts:

(i) General congestion games.
(ii) Symmetric congestion games.

(iii) Asymmetric network congestion games.

Sketch: We explain the simple reduction for (i) because it is the basic framework for the much
harder proof for case (iii). We reduce from the following problem: given an instance of not-all-
equal-3SAT with weights on its clauses and containing positive literals only, find a truth assignment
satisfying clauses whose total weight cannot be improved by flipping a variable. Call this problem
POSNAE3FLIP; it is known to be PLS-complete [17].

Given an instance of POSNAE3FLIP, we construct a congestion game as follows. For each 3-clause
¢ of weight w we have two resources e, and €., with delay that is 0 if there are two or fewer players,
and w otherwise. The players are variables. Player = has two strategies: one strategy contains
all e.’s for clauses that contain z, and another that contains all e/’s for the same clauses. Smaller
clauses are implemented similarly. It is not hard to see that any Nash equilibrium of the congestion
game is a local optimum of the POSNAE3FLIP instance.

The proof of (ii) is by a reduction of the non-symmetric case to the symmetric case. Given
a congestion game with action sets Si,...,Sy, we construct the following symmetric game. Let
Si = {sU{ei} : s € S;} for each i, where the e;’s are distinct new resources with delay function
de;(j) =01if j =1, and d,,(j) = M, a very large number, if j > 2. Consider the symmetric game
with the same edges and common strategy set |J; Si. It is easy to see that any equilibrium of this
game will have one player using a strategy from S;, and hence will correspond to (by omitting the
e;’s) a specific equilibrium of the original game.

We only present an outline of (iii) here. In order to make the idea in (i) work in a concrete
network, we need several modifications and extensions of the original construction of [17]. We need
three new kinds of clauses besides POSNAE3FLIP to replace clusters of POSNAE3FLIP clauses of [17]
that are incompatible with our proof: a single clause over m variables which is satisfied if ezactly
one of its arguments is true and whose penalty scales linearly with the number of extraneous true
arguments; 2SAT clauses with positive literals; and 2SAT clauses with negative literals. We call
this problem EXTENDED POSNAEJ3FLIP, or XPNAE3FLIP. For each such instance we have “network

gadgets” for variables and clauses of each type, and we can put them together in a network con-
gestion game where the players are the variables and any truth assignment can be simulated by a
state of the game.

The hard part is proving that all Nash equilibria of the resulting game are of this “standard”
form and not hybrids that correspond to no truth assignment. The property of the XPNAE3FLIP
instance needed for our proof to go through can be stated in terms of a weighted directed graph,
called the witness graph of the instance, which we define next.

Consider an instance F' of XPNAE3FLIP with a set of variables X and a set of clauses C, where
C =CyUC1UCyUCh Uy, with Cp being the 2- or 3-literal NAE clauses, C; being {¢; }, where
¢1 is the single “one-out-of-m” clause over some set of variables X, Cy and C) — the positive and
negative 2-SAT clauses, and Cs — all the other clauses, all of which are single-variable (i.e. of form
x # 0 or z # 1). Define the set of nodes V' to be V. = (X x {s,t}) U (Cp x {0,1}) U (Cy x {X; U
{1}}) U C2 U Cs.

Suppose now that, for every variable x € X, we arrange the nodes corresponding to the clauses
in which z appears in two ordered lists. The list Li(z) starts with (c¢1,1) if x € X3, and also
contains (¢, 1) for all clauses ¢ € C in which = appears, and ¢ for each clause ¢ in Cy in which z
appears. The list Lo(z) starts with (¢;,) if z € X, and also contains (¢, 0) for all clauses ¢ € Cj
in which z appears, and ¢ for each clause ¢ in C) in which 2 appears. Suppose then that we are
given, besides F', this set of 2|X| lists, call them L. The witness graph WG(F, L) is a directed

graph (V, E), whose edges are defined as follows: for every variable , if L (x) is (vf,..., v}) and
Lo(z) is (v9,. .. ,Uéo), then the witness graph contains the edges (zs,v1), (vi,v3), ..., (v; , 1), and
(zs,), (v9,29),. .., (Ugl ,x1). The paths from z4 to z; consisting of these edges are called the two

standard paths of variable x. This definition references some edges multiple times, but we are not
defining a multi-graph; only one edge between any 2 nodes is added, independently of the number
of times it’s referenced by the above expression. In particular, there are multiple references to
edges connecting two Cj clauses which share 2 variables (or, inconsequentially, identical clauses in
any class), since they appear in the least for each repeated variable. Note that Cy clauses are not
involved in the construction of the witness.

Consider now an instance F' of XPNAE3FLIP, a set of lists £, and the witness graph (V, E) with
non-negative integer weights y on Er. We say that the weighted witness graph (V, E.,y) is valid
for F if the following holds: for any variable z € X, the two standard paths for 2 have the same
length (under y), and are strictly the shortest paths from zg to ;. The WITNESSED XPNAE3FLIP
problem is the following: given an instance F' of XPNAE3FLIP, and a valid weighted witness graph
for F, find a truth assignment whose total weight is maximal.

The proof now follows from two results:

Lemma 1 There is a PLS reduction from WITNESSED XPNAEJFLIP {0 NETWORK CONGESTION
GAME.

Sketch: The construction of the network uses the witness graph as a blueprint. Each clause-
related node is expanded to an edge between two nodes, with all the incoming edges attached to
its source, and all the outgoing edges attached to its destination. The weights (delay functions)
of these “clause edges” are chosen to reflect the exact penalties! for more than 1 variable being
true in the case of (1, and, in case of the other clauses, the penalty for the clause being violated
by all variables being equal. The delays of the other edges, those specific to the variables, are set

Tt is here that the symmetry of the penalty function for C; clauses is needed — the penalty has to be independent
of which variables are true

to be incomparably larger than the clause weights at the “proper load”, and to be incomparably
larger than even that if they are used by too many variables (2 in most cases, 3 if the edge is in
the standard path of 2 variables). This ensures that the standard paths are the only ones taken by
Nash defectors, and thus there are no spurious Nash equilibria. Any clauses containing 2 variables
and a literal are forced to be in Cs or C%, and any clauses containing just 1 variable and a literal are
accommodated by charging their weight to the penalty of an arbitrary private edge of that variable
(chosen from Lg(xz) or Li(z) depending on the literal). O

Lemma 2 WITNESSED XPNAES3FLIP is PLS-complete.

Sketch: See the appendix. [

This completes our outline of the proof of the theorem. [

Corollary 1 For the three cases in the theorem, (a) there are examples of game instances states
from which all Nash equilibria/sinks are exponentially far in the Nash dynamics graph, and (b) the
problem, given a state s, find a Nash equilibrium reachable from s is PSPACE-complete.

Sketch: Our reductions preserve these properties of POSNAE3FLIP [17]. 0]

The Non-atomic Case

The non-atomic congestion game, studied extensively and productively in the work of Roughgarden
and Tardos [15], is the limit of the congestion game as n, the number of players, goes to infinity.
We are given a network (V, F) and endpoint pairs (a;,b;),i = 1,...,k as well as flow requirements
ri,t = 1,...,k, rational numbers adding to 1; also for each edge e € E a non-decreasing delay
function d. : [0,1] — R;. For a path p and flow f, define the delay of the path d,(f) to be
Y ecpde(f). We wish to find a k-commodity flow f satisfying the flow requirements that is a Nash
equilibrium, that is, for all pairs of endpoints a;, b;, any flow path between a; and b; (i.e. a path
with nonzero a;-b; flow) has a delay at no larger than any other a;-b; path p'.

We note that, as observed in [15] this problem can be rephrased as a convex optimization
problem and hence can be solved by the Ellipsoid method. Our algorithm is combinatorial and
runs in strongly polynomial time. We make the following assumption on the latency functions d.

Lipschitz assumption: There exists a constant C' such that for edges e, for all 0 < z < y < 1,
|de(y) — de()| < Cly — 2.

We say a state s = (s1,...,5k) is an e-approximate Nash equilibrium if for every i, every flow
path p carrying at least € units of flow, and every a;-b; path p’, the delay d,(f) is no larger than
dy (f) — €. In words, no player has a defection that decreases her delay by more than e.

We outline an algorithm for computing an e-approximate Nash equilibrium in any congestion
game. With some foresight, we set § = - (where C is an upper bound on the Lipschitz constants
of the latency functions above, and m = |E|).

Recall that a Nash equilibrium of the non-atomic congestion game is a flow that optimizes
the potential function ¢(f) = >, ¢s(fe), where ¢o(fe) = [y de(t)dt. Taking a cue from our
algorithm for the symmetric atomic case, we define an instance of the multicommodity min cost
flow problem. We replace edge e by a sequence of parallel arcs each of capacity § with cost

i
i) —o((i— i 1ys Be(t)dt . . . L .
$(i9) ‘bé(z Do) f(“l)‘;a per unit flow on the i** arc. Since the delay function is increasing, so

are the costs of successive arcs corresponding to a particular edge. We say a flow f on this instance
is canonical if for every edge in the original graph, f uses the first ¢ arcs to their capacity, and
does not use arcs ¢ + 2 onwards. Clearly there is always a canonical optimum to the min cost flow
instance. Moreover, there is a one-to-one correspondence between flows in the original graph and
canonical flows in min cost flow instance.

Consider an optimal canonical solution to the multicommodity min cost flow instance. This
defines a flow f on the original graph. Consider a rounded down version f of this flow, where
fo= 5[%]. Note that f does not necessarily satisfy flow conservation, and hence need not be a
valid flow.

Since f is an “integral” (pseudo)flow, the cost of this flow is exactly equal to the potential
function value evaluated at this flow. Recall that f optimizes the cost function C(f) = Y, Ce(fe),
where C¢(f.) is a piecewise linear approximation of ¢.(f) = Ofe de(t)dt. Thus Ce(i0) = ¢pe(i0) for
any integer 7. Now, for any edge e,

|be(fe) = Celfe)l = lde(fe) = de(fe)) — (Ce(fe) — Ce(f.))]

. gt

— ‘/f de(t)dt — (fe — fe) (=)
. e dy(tyae

[ety = (L jat

€

éﬁ@@+®—wﬁw

e

< 46-C6
= Co°

VAN

where in the first inequality, we have used the fact that for any function f and any point ¢,
|f(t) — fav| is at most | frnaz — fmin|- The second inequality uses the Lipschitz condition.

Thus |¢(f) — C(f)] < Cmd? < ﬁ. Thus the function C(f) approximates the potential

function ¢(f) within an additive error of %.

Now suppose that the optimal min cost flow f is not an e-approximate Nash equilibrium. Then
there is an 4, a flow path p and a path p’ such that d,(f) > dp(f) — €. Rerouting €/2mC units of

flow from p to p’ then improves ¢ by J;C. This however implies that C can be improved by at

least %, contradicting the optimality of f. Thus we have established that any flow f optimizing

C corresponds to an e-approximate Nash equilibrium of the congestion game.

What remains then is to compute the min cost flow f. This however is a linear programming
problem, and also has strongly polynomial time combinatorial algorithms (see e.g. [5, 4]). Thus
we have shown that

Theorem 4 Given a non-atomic congestion game with delay functions satisfying the Lipschitz as-
sumption with constant C, an e-approzimate Nash equilibrium can be computed in time poly(m, C, %)

4 General Potential Games

We have seen that potential functions are valuable for proving the existence of pure Nash equilibria.
What is the precise scope of this method?

Call a game an ezact potential game if there is a function ¢ such that for any edge of the Nash
dynamics graph (s, s’) with defector i we have ¢(s') — ¢(s) = u;(s") — ui(s). A result of Monderer
and Shapley [10] establishes the following disappointing fact (as restated in [20]):

Theorem 5 ([10]) Any ezact potential game is isomorphic to a congestion game.

Hence, the applicability of the potential function method is limited essentially to Rosenthal’s
theorem.

Recall however the party affiliation game from the introduction. Existence of Nash equilibria
was proved by a potential function — albeit not an exact one. For any edge (s,s’) of the Nash
dynamics graph with defector i we have u;(s’) —u;(s) = 2, whereas ¢(s') — ¢(s) can be any positive
number. The potential function argument for convergence requires only that sgn(¢(s’) — ¢(s)) =
sgn(u;(s') — ui(s)). Let general potential games be games that have general potential functions,
i.e. ones satisfying this inequality. The question now becomes, how rich is this class of games? We
note immediately that if a family of games has polynomially computable general potentials, then
the problem of finding a pure Nash equilibrium is in PLS. Our next result is a converse statement:
the class of general potential games essentially comprises all of PLS.

Theorem 6 For any problem in PLS with instances I there is a family of general potential games
indexed by I such that, for problem instance x, the game G, has poly(|x|) players each with strategy
set that includes the alphabet 3, and such that the set of pure Nash equilibria of G is precisely the
set of local optima of x.

Sketch: By generalizing the construction that took us from the MAX cUT local optimality under
the natural neighborhood for the party affiliation game. The players are dimensions of the solution
space, and a local search improvement is translated into a sequence of Nash defections (first by a
lead player, then by others) leading to a new feasible solution. [

5 Discussion and Open Problems

What other games are guaranteed to have pure Nash equilibria? Vetta identifies in [18] the “basic
utility games” as another class of games where the Nash dynamics converges, as proven by a general
potential function. The network creation games [2] are another example, and so are congestion
games with subjective delays played on a network of parallel edges[9]. In these cases, however, some
equilibrium can be produced in polynomial time by an inductive argument.

Consider yet another variant of congestion games, the one with player-specific delays. We have
n players and m parallel edges (strategies), each with a delay function d.(S), a non-decreasing
function of the specific set of the players choosing e (as opposed to their number). Generalizing
slightly a result in [3] we can show:

Proposition 2 In any congestion game with player-specific delays the Nash dynamics converges.

Proof: Consider a state s, inducing a partition Sy, ..., .Sy, of the set of players to the m edges, and
consider the multi-set of numbers p(s) = {d¢, (S1),...,de,, (Sm)}. Suppose that a player defects
from S; to S; to form a state s'; it is easy to see that p(s') is lezicographically smaller than p(s). O

The above argument shows that a quite large class of games has pure equilibria, with the
corresponding problem in PLS. However, the potential function used here is rather novel (sort

the components and weigh them by the powers of a large number), and we have no idea if such
problems can be PLS-complete. Incidentally, counter-examples show that such games in more
general networks fail to have pure Nash equilibria.

Are potential functions (the discrete analog of Lyapunov functions) the only way to establish
convergence of the Nash dynamics? If the dynamics is acyclic, then there is always an awkward
potential function (the topological ordering of the state), but it seems to require exponentially time
to compute. Are there examples of convergent games that do not have polynomial-time computable
potential functions?

Finally, yet another genre of pure equilibrium existence argument, in fact one of an algebraic,
combining nature, seems to be this: If two games are known to have pure equilibria, and their
payoff functions are (in some precise sense not defined here) cross-monotonic, then their union
(same players, the union of the strategy spaces, and the same payoffs) is also guaranteed to have
pure Nash equilibria, by a continuity argument. Facility location-related games are an example
where this type of argument applies.

Acknowledgements

We thank Tim Roughgarden for enlightening discussions.

References

[1] V. Conitzer and T. Sandholm. Complexity results about nash equilibria. In Proc. of IJCAI
pages 765-771, 2003.

[2] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and S. Shenker. On a network
creation game. In Proc. of ACM PODC, pages 347-351, 2003.

[3] D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and P. Spirakis. The structure
and complexity of nash equilibria for a selfish routing game. In Proc. of ICALP, pages 123-134,
2002.

[4] N. Garg and J. Konemann. Faster and simpler algorithms for multicommodity flow and other
fractional packing problems. In Proc. of IEEE FOCS, pages 300-309, 1998.

[5] M. D. Grigoriadis and L. G. Khachiyan. Approximate minimum-cost multicommodity flows
in 6(¢~2knm) time. Mathematical Programming, 75:477-482, 1996.

[6] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search? Journal
of Computer and System Sciences, 37:79-100, 1988.

[7] M. W. Krentel. Structure in locally optimal solutions. In Proc. of IEEE FOCS, pages 216221,
1989.

[8] R. J. Lipton, E. Markakis, and A. Mehta. Playing large games using simple strategies. In
Proc. of ACM E-Commerce, pages 36—41, 2003.

[9] I. Milchtaich. Congestion games with player-specific payoff functions. Games and Economic
Behavior, 13:111-124, 1996.

10

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

D. Monderer and L. S. Shapley. Potential games. Games and Economic Behavior, 14:124-143,
1996.

J. F. Nash. Equilibrium points in n-person games. In Proc. of National Academy of Sciences,
volume 36, pages 48-49, 1950.

C. H. Papadimitriou. The complexity of the lin-kernighan heuristic for the traveling salesman
problem. STAM Journal on Computing, 21(3):450-465, 1992.

C. H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs
of existence. Journal of Computer and System Sciences, 48(3):498-532, 1994.

R. W. Rosenthal. A class of games possessing pure-strategy nash equilibria. International
Journal of Game Theory, 2:65-67, 1973.

T. Roughgarden and E. Tardos. Bounding the inefficiency of equilibria in nonatomic congestion
games. Games and Economic Behavior. To appear.

R. Savani and B. von Stengel. Long lemke-howson paths. Technical Report LSE-CDAM-2003-
14, LSE, 2003.

A. A. Schiffer and M. Yannakakis. Simple local search problems that are hard to solve. STAM
Journal on Computing, 20(1):56-87, 1991.

A. Vetta. Nash equilibria in competitive societies, with applications to facility location, traffic
routing and auctions. In Proc. of IEEE FOCS, pages 416425, 2002.

B. von Stengel. Computing equilibria for two-person games. In R. J. Aumann and S. Hart,
editors, Handbook of Game Theory, Vol. 3, chapter 45, pages 1723-1759. North-Holland, Am-
sterdam, 2002.

M. Voorneveld, P. Borm, F. van Megen, S. Tijs, and G. Facchini. Congestion games and
potentials reconsidered. International Game Theory Review, 1:283-299, 1999.

11

Appendix: Proof sketch of Lemma 2

To prove Lemma 2, we show that the reduction in [17] from CIRCUITFLIP to POSNAE3FLIP yields
instances of the latter which, once cast as XPNAE3FLIP, always have a valid witness.

The reduction in [17] produces, given a circuit with n gates (without loss of generality, all gates
are NORs, with 2 inputs and a fan-out of at most 3), m outputs, and p inputs, a POSNAE3FLIP
instance with the following variables:

Numbering gates from 2 to 2n, we have, for each gate i = 2h (and separately, for each pair

(input,gate), with index ¢ replaced with k,%): g;, yon_1, Y2n, 22n_1, 221, and “local variables”
(!, a?, gL, B2 o2, 3, g0, 8, L¢P, C3, Ch, ¢P)
1 1

Q;, Qg Py Py 37721,7?77?’51‘1751'2,‘*%9& 19 Yoo VYoo Wi Wi Wir Gin S00 64

Implicitly, each output gate is also labeled c;, tj ;, ¢;, or fk,j (the existence of negatives of
outputs is guaranteed, i.e. built into the circuit beforehand); the ¢;’s correspond to g;’s, and
ty ;s — to gr;’s

For each input k: dj, d, ek, ek, Vg, wg, and “local variables” (04, 02, nk, p, 1z, 12)

1 + p extra variables: 2,1, and yj 2n41 for each input k.

Figure 2 lists all the clauses produced in the reduction; all indexes k& and k&' range over inputs,
indexes i range over “real” gates (even numbers from 2 to 2n), indexes h range over all numbers
between 1 and 2n + 1, and indexes j range over all outputs. The notation I;(g;) refers to the first
input to gate i, whether it’s the output of some other gate or an input to the circuit (respectively,
either a gy or a v, /wy variable). See [17] for the full treatment of the original reduction.

To translate this into the necessary XPNAE3FLIP form, note that (a) any POSNAE3FLIP clause
that contains 2 variables and a literal can be put into C2 or C, and (b) the sole C; clause arises
from clauses in the “clique” in group 1.cl.

Then, the witness is constructed according to the per-variable ordered lists shown in Figure 3.
Notation like {(sequence of clauses with & as an argument)};—;., means “that sequence for k =1,
then that sequence for k = 2, etc.” Since some of the ¢, v, w, ¢, and ¢ variables are “aliased”
to each other?, the table indicates where, e.g., a sequence of clauses for a ¢ variable may actually
be preceded by a sequence of clauses for the g variable that this ¢ is synonymous with. Both Cs
and C clauses are included in the lists, even though they appear in only 1 of the lists. Clauses in
parentheses are the single-variable clauses; these do not affect the witness. Lastly, translating from
the per-gate variables (those indexed with 7) to the per-(input,gate) variables (those indexed with
k,i) is just a matter of replacing “2” with “3” as the “clause class.”

The full proof that this witness is valid proceeds roughly by:

1. Showing that most “local variables” (both per-gate and per-input) and ¢’s, v’s, w’s, ¢’s, and
d’s do not interact with variables outside their respective gate or input — that is, there is
no way for the path of, e.g., ai to diverge to areas of the witness corresponding to variables
unrelated to gate 1, and then come back to the node (al);.

2. Inspecting all exceptions to the above (v, 4, and ¢ variables) and all the local interactions to
verify that all alternate paths are longer.

2We assume the circuit is preprocessed to not have any inputs feeding directly to outputs, so the only aliased
groupings can be {v, g}, {w, g}, {g,c}, and {975}

12

3. Showing that, in most cases, the d, a?, e, €, ¥, and z variables do not permit paths to a variable
in the same group but with a lower index. This way, any diversion by a lower-numbered
variable is bound to cause prohibitive congestion for some higher-numbered variable in the
same group.

4. Inspecting all the exceptions to this (d’s in the C; clause, and y/z variables going back by 1
index in 2B/3B), and connections between variable groups to verify that all alternate paths
are longer.

We omit the remaining details here.

13

1. Vk # K"
cl. dk, dk.r, 1
2A. Vi (i.e. even):

cl. TIi(gi), of, 1
c2. o}, B}, 0
3. B, i, gi
cd. v}, 2, 0

5. Ii(gi), 6}, 0
c6. I(g:i), a?, 1
c7. o2, B2, 0
8. A7, %, gi
c9. v2, 2,0
c10. I»(gi), 67,0
cll. 6}, 67, w;
cl2. ¢}, 67, B}
c13. 87,77, gi
cld. yi, v2 1

2B. Vh # 2n+ 1:

cl. yn, zn, 0

c2. Zhy Yh+1, 1
(h < 2n)

2C. cl.

c2. Yon+1, 1

Z2n,y Y2n+1, 1

C3. Vk‘, Yon+1, dk-,
0

2D. Vi
cl. ¥}, o}
c2. Y, of
3. PP, i
cd i, 7P
c5. 7, B
c6. P, wi
T i, yi1
c8. 1/)3, Yi—1
9. Y7, yi1
c10. ¥}, yi—1
cll. o2, yia
cl2. 8, yi1

cl3. ¢, Bt 3D. Vk,i:
cl4. <i27 512 cl.
c15. ¢, o c2.
cl6. Ci‘l, 61-2 c3.
A7 ¢y} c4.
cl18. ¢z ch.
cl9. ¢Z, zia c6.
c20. €3, %1 c7.
c21. ¢}, 2 c8.
€22. €3, %1 c9.
2E. Vi: c10.
cl. pi, ail cll.
2. pi. o cl2.
3. i gi cl3.
A, pi, 0 cl4.
clb.
3A. Vk,i (i.e. even): c16.
cl. Ti(gr,i), i, cl7.
1 cl8.
c2. allc,i7 51%@ 0 c19.
c3. /311-,1‘7 '711,1‘: Gk,i c20.
cd. Yiis 2y 0 c21.
c5. I1(gri), O, 0 c22.
c6- f(gk’i)’ Wi 3B ki
c’. ai,i, ,6’,3,1-, 0 cl.
c8. /81?:,1') ’Yl?:,iy Gk,i c2.
9. Yiis Zkyis 0 c3.
c10. I>(gk.), 6,3,1-, 0 c4.
cll. 64, Op sy Whii 4. Vk,j
cl2. 5i,i: 51%,1'7 ﬂ/?,i

c13. Biis Vi Ghoi ct.
4. yis, 7i 1 c2.

3B. Vk,h % 2n+1: 5. Vk
cl. Yr.n, 2k, 0 cl.
C2. Zihy Yk,htl, 1 c2.

(h < 2n) 6. Vk
3C. Vk: el
cl. yko2nt1, di, 0 c2.

wli,ia allc,i
l/}/%,ia ai,i
l/}l%,ia ’Yli,i
wé,ia ’Yl%,i
v B i
VR i Wi
Vhir Yyio1
Vi ir Yryio1
Vi iy Yyio1
Vi ir Yyio1
VR iy Yhoim1
Vis Yk,i—1
Chois Brai
Cii> Bia
CRois Oni
Ciis O
C/?,i: ’Y/?c’,i
Choi» Zhyio1
Chi» Zhyio1 9
Ch iy Zhyio1
Chis ki1

Chis Zhiiz1

Pk,i, allc,i
Pk,i, ai,i
Pk,iy Gk,i
Pk,i, 0

dy, cj, 0

d, trj, 1 11.

dk: dk) 1
di, 0

di, 9,{.,1
dr, 62,0

10.

c3. wy, 05, Mk
cd. wg, 9,%, Nk
cd. Uk, Mk
6. Or, Mk
c7. 0%,

. Vk

cl. pk, vk, wi
c2. fil, vp, wi
3. i, ik
A i, P, ek
ch. eg, €k

cb. er, 0

c7. pp, 0

8. 2,1

Vk,h #2n+1

cl. €k; Yk,hs 1

c2. €k, Zk,n, 0

. Vk#£K,Vh

cl. €ky Zh 1
c2. ek, 2y p, 1
c3. ék, Yh, 0

cd. €k, Y’ ,n, 0
Vk # k', Vh

cl. dk, Yh, 1
c2. dk, yk’,hy 1
c3. Jk, Zhy 0

c4. Cik, Zk! by 0
Vk, h

cl. vg, wg
c2. dg, 1
c3. zp, 1
cd. zpp, 1
ch. yn, 0
c6. yin, 0

Figure 2: Clauses in the PLS-reduction from CIRCUITFLIP to POSNAE3SAT in [17].

14

gi {2E.c3, 2A.c3, 2A.c8, 2A.c13} as output, or the v/w sequence; then, {2A.c1, 2A.c5} or {2A.c6, 2A.c10} as
1-3 inputs, in gate order, or the c/f sequence
a} 2A.c2, 2A.cl, 2D.cl, 2E.cl
a? 2A.c7, 2A.¢6, 2D.c2, 2E.c2
1 2A.c2, 2A.c3, 2D.c13
2 2A.c7, 2A.c8, 2D.cl4
3 2A.c12, 2A.c13, 2D.ch
i 2A.c3, 2D.c3, 2A.c4
v? 2A.c8, 2D.c4, 2A.c9
3 2A.c13, 2D.cl17, 2A.c14
5} 2A.cl1, 2A.c12, 2A.c5, 2D.cl5
67 2A.cl11, 2A.c12, 2A.c10, 2D.c16
w;i 2A.cl1, 2D.c6
pi 2E.c3, 2E.cl, 2E.c2, (2E.c4)
B 2D.cl, 2D.c7
B 2D.c2, 2D.c8
3 2D.c3, 2D.c9
4 2D.c4, 2D.c10
9 2D.c5, 2D.cl1
S 2D.c6, 2D.c12
B 2D.c13, 2D.c18
2 2D.c14, 2D.c19
3 2D.c15, 2D.c20
4 2D.c16, 2D.c21
i 2D.c17, 2D.c22
Yoh—1 2D.c7, 2D.c8, 2D.c9, 2D.c10, 2D.c11, 2D.c12; 2B.c2, 2B.c1; 9.c3r=1..p; 10.clp=1.. p; (11.c5)
Yoh 2A.c14; 2B.c2, 2B.cl; 9.¢3k=1...p; 10.clp=1...p; (11.cH)
Zoh—1 2D.c18, 2D.c19, 2D.c20, 2D.c21, 2D.c22; 2B.cl, 2B.c2; 9.cli=1...p; 10.c3x=1...p; (11.c3)
Z9h 2A.c4, 2A.¢9; 2B.cl, {2B.c2 or 2C.cl for 2n}; 9.clp=1.. p; 10.c3x=1..p; (11.c3) for 2n
Yon+1 2C.c1; 9.¢3k=1..p; {2C.c3, 10.c1}g=1...p; (2C.c2, 11.cb)
Yk,2h—1 | 3D.c7, 3D.c8, 3D.c9, 3D.c10, 3D.c11, 3D.c12; 3B.c2, 3B.cl; {8.cl if k' =k, 9.c4 else}y/—1..p; 10.c2%/ 1., p,
(11.c6)
Yk, 2h 3A.cl4; 3B.c2, 3B.cl; {8.clif k' =k, 9.c4 else}yr—1.. p; 10.c25=1...p; (11.c6)
Zk2h—1 | 3D.c18, 3D.c19, 3D.c20, 3D.c21, 3D.c22; 3B.cl, 3B.c2; {8.c2 if k' =k, 9.c2 else}rr=1.. p; 10.c4dgr=1..p, (11.c4)
Zk 2k 3A.c4, 3A.¢9; 3B.cl, 3B.c2; {8.c2 if k' =k, 9.c2 else}pr—1.. p; 10.cdpr—y. p; (11.c4)
Yr,2n41 | 9.cdpr—1. p; {3C.cl if k' =k, 10.¢2 else}r—1. ,; (11.¢6)
cj g output sequence, then 4.cly=1..
te,j (not used)
éj (not used)
fk,j g output sequence, then the single 4.c2
dy, The 1l.cl clique; 6.cl; 5.cl; 4.clj=i.m, 4.62j=1..m; 10.clp—1..20+1, 2C.c3; {3C.cl if ¥ = k, else
10.c2p=1...2n41 }ir=1...p; (11.€2)
dp, 6.c2; 5.c1; 10.c35—1...2n+1; 10.c4p—1._ 2n41; (5.C2)
er 7.¢4, 7.¢5; 9.c1, {8.clp=1..2n41 If k' =k, else 9.¢2p=1...2n }rr—1...p; (7-¢6)
ék- 7.05; 9.C37 {8-02h:1...2n lf k, = k, else 9~C4h:1...2n+1}k’:1...p
Uk 11.c1, 7.cl, 7.c2, 6.c5; then g input sequences
W 11.c1, 7.cl, 7.c2, 6.c3, 6.c4; then g input sequences
o1 6.c6, 6.c3, 6.cl
67 6.c4, 6.c7, 6.c2
Nk 6.c6, 6.c3, 6.c4, 6.c7, 6.cb
uh 7.cl, 7.c4, (7.c7)
w 7.c3, 7.c4
i 7.¢3, 7.c2

Figure 3: Per-variable ordered lists that comprise the valid witness.

15

	pure.ps.eps

