
Outline Suffix Arrays OASIS

Advanced Data Structures for String Matching:
Suffix Arrays and OASIS Algorithm

Nick Kiourtis

May 17, 2007

1 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

1 Suffix Arrays

2 OASIS

2 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Suffix Array: Definitions

Large String A = a0a1 . . . aN−1 of length N , Alphabet Σ, W query
string of size |P |.

Ai = aiai+1 . . . aN−1 suffix of A starting at i.

Pos[k] is the start position of the kth smallest suffix in set
{A0, A1, . . . , AN−1} (lexicographic ordering)

Pos is the suffix array of A

APos[0] < APos[1] < · · · < APos[N−1]

If |u| > p then up = u0u1 . . . up−1, else up = u

u <p v iff up < vp (similarly 6=p, ≤p, etc.)

Because Pos is sorted lexicographically, for any choice of p, Pos is
also ordered according to ≤p

3 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Suffix Array: Example

A = abracadabra

Suffix, Index
a b r a c a d a b r a 0

b r a c a d a b r a 1
r a c a d a b r a 2

a c a d a b r a 3
c a d a b r a 4

a d a b r a 5
d a b r a 6

a b r a 7
b r a 8

r a 9
a 10

4 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Suffix Array: Example (2)

A = abracadabra

Sorted Suffix, Index
a 10
a b r a 7
a b r a c a d a b r a 0
a c a d a b r a 3
a d a b r a 5
b r a 8
b r a c a d a b r a 1
c a d a b r a 4
d a b r a 6
r a 9
r a c a d a b r a 2

Suffix Array [10, 7, 0, 3, 5, 8, 1, 4, 6, 9, 2]

5 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Searching in Suffix Arrays

W = w0w1 . . . wP−1, P ≤ N .

LW = min(k : W ≤P APos[k] or k = N)
RW = max(k : APos[k] ≤P W or k = −1)

W matches aiai+1 · · ·Ai+P−1 iff i = Pos[k], k ∈ [LW , RW]

Find LW , RW with binary search, using O(log(N)) comparisons of
strings of size at most P

Total time O(P log(N))

6 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Algorithm 1

7 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Optimizing Search Time

lcp(v, w) length of longest common prefix of v and w. We can
obtain it when testing v < w

l = lcp(APos[L],W), r = lcp(W,APos[R]). Initially,
l = lcp(APos[0],W), r = lcp(W,APos[N−1]), and update l or r in
every step

This way we can save h = min(l, r) single symbol comparisons,
when comparing APos[M] to W , because APos[L] =l W =r APos[R],
that is APos[L] =h W , ∀k ∈ [L,R]

Worst case still O(P log(N)) (e.g. search acN−2b for cP−1b)

8 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Optimizing Search Time

ALL possible triples (L, M, R) inside the loop are exactly N − 2,
and each has a unique midpoint M ∈ [1, N − 2].
0 ≤ L < M < R ≤ N − 1

Let (LM ,M,RM) one of them. Define
Llcp[M] = lcp(APos[LM], APos[M]) and
Rlcp[M] = lcp(APos[M], APos[RM])

Consider an iteration of search loop for (L,M,R). Let
h = max(l, r), ∆h be the change in h after iteration

Assume h = max(l, r) = l, so we must consider 3 cases:

1 Llcp[M] = l
2 Llcp[M] < l
3 Llcp[M] > l

(if max(l, r) = r we would consider cases for Rlcp[M])

9 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Optimizing Search Time

For each case, determine whether LW is in right half or left half of
(L,M,R) and update value of either l or r

1 Llcp[M] = l (lcp(APos[L], APos[M]) = lcp(APos[L],W))
The first l symbols of Pos[M] and W are equal. Compare
l + 1, . . . , l + j symbols until W 6=l+j Pos[M]. If
W [l + j] < M [l + j] then LM ∈ (L,M) and r = l + j, else
LM ∈ (M,R) and l = l + j. Since l = h at the beginning of the
loop, this step takes ∆h + 1 single step comparisons

2 Llcp[M] < l (lcp(APos[L], APos[M]) < lcp(APos[L],W))
W matched l symbols of L and < l symbols of M , thus
LM ∈ (L,M) and r = Llcp[M]

3 Llcp[M] > l (lcp(APos[L], APos[M]) > lcp(APos[L],W))
APos[M] =l+1 APos[L] 6=l+1 W and APos[M] =l W =l APos[L], so
LW ∈ (M,R) and l is unchanged

10 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Optimizing Search Time

Thus, the use of arrays Llcp and Rlcp reduces the number of single
symbol comparisons to at most ∆h + 1 for each iteration.∑

∆h ≤ P

Total number of single symbol comparisons is at most
P + dlog2(N − 1)e

Worst case running time O(P + log(N))

11 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Algorithm 2

12 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Sorting

Sorting Pos array is done in dlog2(N + 1)e stages

In Hth stage, suffixes are sorted according to ≤H order. In next
stage, suffixes are sorted according to ≤2H order

First sort is according to the first symbol of each suffix, and the
result is stored in Pos array and in BH array which demarcates the
partitioning of suffixes into m1 buckets (each bucket holds suffixes
with the same first symbol)

Let Ai, Aj be suffixes that belong in same bucket after Hth step,
Ai =h Aj . We want to compare them according to the next H
symbols

But the next H symbols of Ai are the first H symbols of Ai+H and
we know the relative order according to the ≤H relation

13 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Sorting

Start at the first bucket (contains the smallest suffixes according to
≤H). Let Ai be the first suffix (Pos[0] = i).

Consider Ai−H (if i−H < 0, ignore Ai and take the suffix of
Pos[1], etc.)

Since Ai starts with smallest H–symbol string, Ai−H should be the
first in its 2H–bucket, so move Ai to beginning of its bucket and
mark this fact.

Keep track of the number of suffixes that have been moved from
bucket

Basically the algorithm scans the suffixes as they appear in ≤H

order and for each Ai, if Ai−H exists, it moves it to the next
available space in its H–bucket

14 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Sorting Algorithm

Maintain 3 integer arrays Pos, Prm,Count and 2 boolean arrays
BH,B2H of length n + 1

After stage H, Pos[i] contains start position of ith ≤H–smallest
suffix, Pos[Prm[i]] = i. BH[i] = 1 iff Pos[i] contains the leftmost
suffix of an H–bucket (APos[i] 6=H APos[i−1]). Initially need time
O(N)

In stage 2H: Reset Prm[i] to point to the leftmost cell of the
H–bucket containing the ith suffix rather than to its precise place in
the bucket, and set Count[i] = 0 for all i

Now we scan the Pos array in increasing order, one H–bucket at a
time. If l, r are the left and right boundaries, for i from l to d do:

Define Ti = Pos[i]−H (if Ti ≤ 0 go to next i)

Increment Count[Prm[Ti]] (to keep track of how many suffixes
have been moved in the H–bucket that countains the suffix that
starts at position Ti)

15 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Sorting Algorithm (2)

Set Prm[Ti] = Prm[Ti] + Count[Prm[i]]− 1 (to make this the
next suffix in the bucket, without changing the Pos array)

Set B2H[Prm[Ti]] = 1 (to mark the suffix as moved)

Before moving to the next bucket, find all the moved suffixes and
reset their B2H fields such that only the leftmost one of each
2H-bucket is set to 1. This way, the B2H fields mark correctly the
beginning of the 2H buckets

In the end update Pos as the inverse of Prm and set BH to B2H

All these steps can be done in linear time O(N)

Since there are dlog2(N + 1)e stages, sorting requires O(N log(N))
time in the worst case

16 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Finding Longest Common Prefixes

We compute the longest common prefixes between the suffixes
starting at each midpoint M and its left and right boundaries LM ,
RM during the sorting

Key idea for adjacent buckets: Assume that after step H we know
the lcps between suffixes in adjacent buckets (after step 1, lcps = 0)

The lcps between suffixes in newly adjacent buckets must be at
least H and at most 2H − 1 (since at stage 2H, buckets are
partitioned according to 2H symbols)

If Ap, Aq are in the same H–bucket but in distinct 2H–buckets,
then lcp(Ap, Aq) = H + lcp(Ap+H , Aq+H), and
lcp(Ap+H , Aq+H) < H

However, if APos[i] and APos[j], i < j, have a lcp less than H and
Pos is in H–order, then

lcp(APos[i], APos[j]) = min
k∈[i,j−1]

(lcp(APos[k], APos[k+1]))

17 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Interval Tree

O(N) space height balanced tree structure that records the
minimum pairwise lcp over a collection of intervals in the suffix
array. Helps compute the lcp between any two suffixes in O(log(N))

Define height(i) = lcp(APos[i−1], APos[i]), 1 ≤ i ≤ N − 1, Pos
final sorted order. These values are computed in an array Hgt[i]
inductively with the sort

Hgt[i] achieves its correct value at stage H iff height(i) < H,
otherwise it is undefined and Hgt[i] = N + 1

If height(i) < H, then APos[i−1], APos[i] must be in different
buckets (or else they would have the same H preffix and thus
height(i) ≥ H)

Lemma: If H ≤ height(i) < 2H then
height(i) = H + min(HgtH [k] : k ∈ [min(a, b) + 1,max(a, b)]),
where a = Prm2H [Pos2H [i− 1] + H], b = Prm2H [Pos2H [i] + H]

18 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Interval Tree

Initially, Hgt[i] = 0 if APos1 [i− 1] 6= APos1 [i], and n + 1 otherwise

At the end of stage 2H > 1, we have Pos2H , P rm2H , BH2H .
From previous lemma, we can compute Hgt2H from HgtH :

for i ∈ [1, N − 1] such that BH[i] and Hgt[i] > N do
{
a← Prm[Pos[i− 1] + H]
b← Prm[Pos[i] + H]
Set(i,H + Min Height(min(a, b) + 1,max(a, b)))
}

Consider a balanced and full binary tree, N − 1 leaves that
correspond to Hgt[i] values (left to right). Tree has height
O(log(N)) and N − 2 interior vertices.

Tree is ”current” if for every interior vertex v,
Hgt[v] = min(Hgt[left(v)],Hgt[right(v)])

19 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Interval Tree

Min Height(i, j) computes min(Hgt[k] : k ∈ [i, j]) in O(log(N))
time as follows:

Let nca(i, j) be the nearest common ancestor of leaves i, j (can be
found in O(log(N)) time). If P is the set of vertices on the path
from i to anc(i, j) without nca(i, j), and Q the similar path from j,
then Min Height(i, j) is the minimum of

1 Hgt[i]
2 Hgt[w], such that right(v) = w and w 6∈ P for some v ∈ P
3 Hgt[w], such that left(v) = w and w 6∈ Q for some v ∈ Q
4 Hgt[j]

All those vertices are O(log(N)) and their min can be computed in
O(log(N)) time

Set(i, h) sets Hgt[i] = h and then makes T current again by
updating Hgt values of the interior nodes on the path from i to the
root. Again this takes O(log(N)) time

20 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Interval Tree

Overall time in stage H is O(N + log(N) · SetH), where SetH is
the number of indices i for which height(i) ∈ [H, 2H − 1]∑

SetH = N , so total time in all stages is at most O(N log(N))

Interval tree helps us compute Llcp[M] = lcp(APos[LM], APos[M])
and Rlcp[M] = lcp(APos[M], APos[RM])

One way: The root of the tree is labeled (0, N − 1) and the
remaining vertices are labeled (LM ,M) or (M,RM)

Another way: The trees interior nodes have labels (LM , RM), and
in particular the leaves have labels (i− 1, i) for i ∈ [1, N − 1] (left
to right order). For each interior vertex left(LM , RM) = (LM ,M)
and right(LM , RM) = (M,RM). Since the tree is full and
balanced and the leaf (i− 1, i) holds the value of Hgt[i], we have
that Hgt[(L,R)] = min(height(k) : k ∈ [L + 1, R]) =
lcp(APos[L], APos[M]).
Thus Llcp[M] = Hgt[(LM ,M)] and Rlcp[M] = Hgt[(M,RM)]

21 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

OASIS Overview

OASIS is an algorithm that computes the local alignment between
two sequences with the maximum possible score

Local alignment: given two sequences of symbols Q = q1q2 . . . qm

and T = t1t2 . . . tn, a local alignment is some way of lining up any
two subsequences of Q andn T .

There are three types of alignment operations:

1 Replacement, with either the same symbol or another symbol
2 Deletion allows to skip a symbol in the target
3 Insertion allows to skip a symbol in the query

Alginments are given scores based on the sum of the scores of each
operation involved in the alignment

Every operation is generalized to a replacement α→ β, where
insertions are represented as − → β and deletions as α→ −
Scores are stored at a substitution matrix S, where Sα,β is the score
of α→ β

22 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Smith-Watermann (S-W)Algorithm

The S-W algorithm finds the local alignment with the max possible
sxore using a dynamic programming algorithm that takes O(mn)
time. It generates an m× n matrix G where each entry Gi,j stores
the score of the maximum alignment between a query Q and target
T ending at qi and tj

Gij
= max

0, “start over”

Gi−1,j−1 + S(qi → tj), Replacement

Gi−1,j + S(qi → −), Insertion

Gi,j−1 + S(− → tj), Deletion

23 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Smith-Watermann (S-W)Algorithm

Gij
= max

0, “start over”

Gi−1,j−1 + S(qi → tj), Replacement

Gi−1,j + S(qi → −), Insertion

Gi,j−1 + S(− → tj), Deletion

Example: Q =TACG and target T =AGTACGCCTAG

A G T A C G C C T A G

T 0 0 ↖1 0 0 0 0 0 ↖1 0 0
A ↖1 0 0 ↖2 ←1 0 0 0 0 ↖2 ←1
C 0 0 0 ↑1 ↖3 ←2 ↖1 ↖1 0 ↑1 0
G 0 0 0 0 0 ↖4 ↖3 ←2 ↖1 0 ↖2

24 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Suffix Tree

25 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

OASIS Algorithm

Basic idea is to perform a best-first search for local alignments,
where the expansion of the nodes in the search space is driven by a
suffix tree. Nodes are expanded “like” S-W and are placed in a
priority queue. Nodes that are likely to produce better score are at
the top of the queue.

OASIS consists of three subroutines Initialize, Expand and
OASIS (the last is the main function)

The Initialize function takes as input the suffix tree T (built on
the sequence database), the query Q, the arbitrary substitution
matrix S and minScore, which is a minimum alignment score

The function returns a vector H with all alignments with scores
greater than or equal to minScore, in reverse order of score. H is
called a “heuristic vector”. The function also returns the priority
queue, which is a list of nodes that it will expand one by one. At
this point the priority queue only contains the root of the suffix tree
(called the seed).

26 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

OASIS Algorithm

Each hi in H represents the maximum possible score of
qi+1qi+2 . . . qm with an arbitrary target.

We calculate these values assuming non-positive values for
insertions and deletions

Hm is set to zero, because the remaining part o the query is empty.

Then by induction, we calculate the remaining values
Hi−1 = Hi + (the max score for the replacement of qi−1)

The root of the tree is returned as a search node of OASIS.

27 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

OASIS Search nodes
OASIS search nodes have the following properties:

1 sp: A pointer to a node in the suffix tree

2 Z: A vector [z0z1 · · · zm]T , where zi is the score of the strongest
alignment between the sequence path(sp) and any subsequence of
Q ending at qi. zi is set to −∞ if the alignment has been pruned.
This vector is analogous to a column of the S-W matrix

3 maxScore: The maximum score alignment found along this path.
it is the score of the strongest alignment between any prefix of the
sequence path(sp) and any subsequence of the query

4 f : The maximum prossible score that can be achieved by further
expanding this node

5 g: The maximum score in Z, or the best score ending at node sp in
the suffix tree

6 tag: Indicates the status of each search node: ACCEPTED,
VIABLE or UNVIABLE

28 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

OASIS Search nodes

A node is tagged ACCEPTED when the strongest possible
alignment of the query with this node (or any of its descendants)
has been found, and the alignment score passes the minScore
threshold. When these nodes reach the top of the priority queue, we
return the alignment on-line, since we are certain, by the ordering of
the priority queue, hat no subsequent alignments will be stronger

A node is tagged VIABLE when a stronger alignment other than
that already found along this path is possible, and the minScore
threshold is reached

A node is tagged UNVIABLE if no possible expansion of this node
can result in an alignment with the necessary strength. These nodes
are pruned from the search tree, while the other two are added to
the priority queue

29 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

OASIS Search nodes

As we noted earlier each node stores scores for alignments ening at
each position of the query (Z vector)

The sum of these scores is used to organize the search nodes in a
priority queue PQ, that is, the priority queue is ordered by the
f–value

Because the node at the head of the PQ is always expanded first
(remember: it has the largest f–value), it is clear that a node is
only expanded when it cane be guaranteed that no other node on
the PQ can produce a stronger alignment

That’s why OASIS is a best-first search technique

30 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

OASIS Initialize

31 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

OASIS Initialize

The function returns the ‘heuristic vector” vector H with all
alignments with scores greater than or equal to minScore, in
reverse order of score. It also returns the priority queue
PQ = {seed}, seed.sp← Root[T].

Because the path length of the root is 0, all the values in Z are 0,
or −∞, in cases where the alignment can be pruned. This is done
when entry hi is less that the value of minScore (which implies
that this starting alignment point cannot yield a strong alignment)

Z H x = 0N

0 4 maxScore = 0
T 0 3 f = 4
A 0 2 g = 0
C 0 1
G −∞ 0

32 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

OASIS Expand

33 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

OASIS Expand

This function is the core of OASIS

It is the function that computes columns like in the S-W algorithm,
and to do that it uses the Z column of the parent node as seed

After computing a value gi,j , OASIS performs alignment pruning
(seting score in Z vector to −∞) on alignments that are no longer
viable.

34 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

OASIS Expand

Three cases for pruning:

1 gi,j ≤ 0: To avoid duplicationg work, nodes with negative alignment
are pruned. Consider a partial local alignment between a portion of
a query qaqa+1 . . . qb and a portion of suffix tctc+1 . . . td. If the max
alignment score beginning at qa → tc and ending at qb → td is
negative, then the score of any alignment between
qaqa+1 . . . qb . . . qc′ and tctc+1 . . . td . . . td′ will have a lower score
than the alignment between qb+1 . . . qc′ and td+1 . . . td′ . This
second alignment will be expanded alogn another tree path

2 There is an existing alignment which is just as good, i.e.
gi,j + hi ≤ node.MaxScore: We cannot find an extension to this
alignment with a better score that the strongest alignment already
found in this search path

3 Threshold failure, gi,j + hi ≤ minScore: No possible extension to
this alignment can be equal to or greater than minScore

35 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Suffix Tree

36 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Expansion of node 1N

G (Z) H F x = 1N

- A ← Target(headPos = 3)
0 −∞ 4 −∞ maxScore = 1

T 0 ↖ (−1) 3 −∞ f = 3
A 0 ↖ 1 2 3 g = 1
C 0 ↑ (0) 1 −∞ tag = V IABLE
G −∞ ↖ (−1) 0 −∞

Node is VIABLE because f ≥ minScore

Expansion of node 2N results in a f value of 2 and g value of 1.
Expansion of node 3N results in a f value of 1 and g value of 1, so
this node is marked ACCEPTED

37 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Expansion of node 4N

G (Z) H F x = 4N

- T A ← Target(position = 8− 9)
0 −∞ −∞ 4 −∞ maxScore = 2

T 0 ↖ 1 ← (0) 3 −∞ f = 4
A 0 ↑ (0) ↖ 2 2 4 g = 2
C 0 ↖ (−1) ↑ (1) 1 −∞ tag = V IABLE
G −∞ ↖ (−1) −∞ 0 −∞

Node is VIABLE because f ≥ minScore

38 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Expansion of node 2L

G H F x = 2L

A C G ← Target(position = 3− 5)
−∞ −∞ −∞ 4 −∞ maxScore = 4

T −∞ −∞ −∞ 3 −∞ f = 4
A 2 ← 1 ← (0) 2 −∞ g = 4
C −∞ ↖ 3 ← (2) 1 −∞ tag = ACCEPTED
G −∞ ↑ (2) ↖ 4 0 4

Node is ACCEPTED because f = g

39 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

Expansion of nodes

At first PQ = {Root[T]}

After first expansion PQ = {(4N/4), (1N/3), (2N/2), (3N/1)}

After another step PQ = {(2L/4), (8L/2), (2N/2), (3N/1)}

The top element is tagged ACCEPTED and we have found the
maximum local alignment

40 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

Outline Suffix Arrays OASIS

OASIS Main Loop

41 / 41

Advanced Data Structures for String Matching:, Suffix Arrays and OASIS Algorithm

	Outline
	Suffix Arrays
	OASIS

