Splay; irees

Georgia Kaour

Advanced! Data Structures

Need! for Splay: Trees

We want: te canry, out a seguence of
ACCESS Operatiens on a BSi.

To minimize the total access time,
accessed Iems should e near the: root.

Allen and MUnre: prepesed twer Reurstics
Pasedl 6N s/agle relanen and move. (o, 1001
Actiens.

2/35

Single Rotation

Basic Rotation

Simple Exchange (Attempt 1)

3/35

Move: to) root (example)

/ : . access b

Move: to) root (example)

Move: to) root (example)

6/35

Need! for Splay: Trees

EGr eachione, the time: per aceess Is O(n).

Meve 1o roet has; an asymptotic average
Wine: Per access Withinr a constant factor of
mInImMUm, SUPPESING access prokanilities
off the Items are fixed and: the accesses
are Independent.

Not geod enough...

7/35

Splaying

e splay’ a tree at node x (With: parent
p(Xx), grandparent g(x)), We' repeat the
splaying stepr until-x IS the roet.

= ZIQg
s Z1I0-210
x Z10-Zag

8/35

Z1Q

li- p(X) IS/ the roeot, retate: the edge: joining
X Withi p(x).

9/35

Z19-Z10

[T P(%) IS AL the reet and hothhx and px)
are left or right children, we! first rotate
the' edge: jeining P with (<) and then
the edge jeining x and px).

Z10-Za09

Iff X Is a lefit and px) Is a rght child (er vice-
Versa), retate the edge joimingl x. withr p(x) and
then rotate: the: edge jeining) X withr “new: px)

(elafg(%)):

111/35

Notes

Each Stepr hask a miroer Inage: vamhani: that
covers all'the cases.

Only the zIg-zZig| step; distinguishes splaying
firon rotatien te the roet:.

12/35

Analysis of the performance of
Splaying

Each node x has an arbitrary choesen: pesitive
Wwelght wix).

Assigning different weights leads to a heund: en
the cost of a seguence of accesses (letter
pound wWhen freqguent elements have high
WeIght):

Size of nede X s(x)=Sumi(ever y: in; the: subtree
reoted at x) of- wWi(y)

rank of node x r(x)=legs(x)

potential of a tree s the sumiof the ranks ofi all
ItS Nedes

113/35

Ranks

Rank Rule: Suppese two siblings have: the
Same rrank I Then the parent has rank at least

.
When a nede has rank r, Its size Is, at least 2. So

the twoi siblings have totall size at least 2071, s
the rank of thelr parent has' rank at least 1.

When a node x and Its parent have the same
rank r, the sibling of x must have rank <r.

14/35

About the poetential

When perferming a retation: between

nodes x and'y, only the ramnks off nodes; X
and y: are affected.

Ift y Was the root of the tree before a
retation, then r(y)=r(x).

If* for eachi nede x in T Wx)=d, then the
potential of a halanced treeris O(n) and of
a leng chain'is O(nlegn).

15/35

Amortized complexity using
potential

a: amortized time: of an eperation

i: actual timer off an eperation’ (Is' equal’ te: the
AUMBENF Of retatiens)

@ poetentiall belore an eperaten

@ petentialf after an eperaen
a=t+d -

EGr a seduence: of m; eperations:

Access Lemma

The amortized: time 1o splay: a tree with: reot t at a
node X IS at most

S(r(D)-r(x))+1=0(log(s(L)/(s(x))):

Proof: When there: are nos rotations; the: bound: Is
OVIOUS!

SUppPeSse at least ene rotation,

Let s, S, r, ' be the size and rank functions before
anadl after thersplaying step:

Let y be the parent off X and z the parent of Y before
the step (Iif It exists).

W(x)=1 fer all ofi the nedes of the tree

117/35

Proof (cont.)

Z1g: One rotation’ takes place, soi the amertized
time: of the step) IS:

IO ErF (V) =r0x)=-r(y) enRIy XY change: ranks

< 1+r'(x)-r(x) r)2r'(y)
=1+3(r (%)-r(x)) F()=r(x)

Proof (cont.)

ZIg-Z1g: IWo retatiens are: dene; so:

2+ (X)H1 (Y)+1(2)-1(X)-r(y)-r(2)
= 2+1r(y)+r'(2)-r(x)-r(y) rx)=r(z)
<2+1'(X)+r'(2)-2r(x) F)= () and r(y)=r(x)

Claim: 2+ (%) +1r(2)-2r()=3(r'(¢)-r(x))
21 (X)-rCx)=r'(z)=2 follows: from the: convexity: ofi the' 1og| ana
S(X)+S'(2)=s'(x).

Proof (cont.)
Z19-Zag: Alse 2 rotatiens:

241)+ (V) E1 (2)-1(¥)-r(y)-1(2)
<2+ (Y)Fr(2)-2r(x) FO)=r(Z2) and rx)=r()

Claim: 23 (V) F(2)-2r()s2(1F OO =1 09)) <

250 (V)=r(z)=2
AS In the zig-zig case and alse) s (V)+s(Z) =s'(X)-

20/35

Proof (cont.)

SUmming the' amertized times, estimates
o all the splaying steps, and Since: the' zig
step can enly. eoccur once, the lemma
feliows:

Note that the Zzig-zig step IS the most
expensive off the three.

21/35

BALANCE THEOREM: The total access time
IS O(m=(n+m)logn)

Proof: Eor item I (A=i=h) assign weights wii)=1/n.
hen the total weight Isi L and the rank of the rooet
IS 0. By Access Lemma the amortized cost of an
Aceess Is; hounded by 3logn=+1 and summing GVer
all'acecesses gives O(m+miogn).

Eer a nedel, the rank leg(d/m)= r{)=0.

he net aecrease Inl the potential Isy at most niegn
(since the net decrease In petentiall over a
SegUEnce: of steps IS' at mest PIRE:UALD), Where

LEDYEEZ0] hecause the size of nede | is at most W
and at least w(1))-

22/35

STATIC OPTIMALITY THEOREM: The total cost of
a seguence oft m accesses) Is eqgual te

Preof (sketch):

ASSIgn Welghts te item) I 1o be egual to
g (1)/im..
g(1)=0I Is the access freguency. of Item I,

l.e. the total number of times item 1 IS
accessed.

Note that m=Stm over I off g(1).

23/35

STATIC EINGER' THEOREM: If T Is any: fixed

item, the total access time Is
Onlogn+m+ X% log(\ij—f|+1)

Proef (Sketch)):
Assign weight to) item. i equall to VAU RN A TkR))
W=2%(1/k&)=0(1)

Amortized time of the Jth access: O(log(]i:-
fl+1))

Net petentialFdrop oVer the sequence:
O(nlegn)i(since the Welght of any Iem’ IS
at least 1/n?).

24/35

WORKING SET THEOREM:

Let ©(J) be the number of accesses of
different Items that occulired: hetween
ACCEss | and! the previous: access of the
same Item. Then: the totall access: time IS
O(nlegn+m=2"eg(t(|)+1))-

The theorem states that If accesses
concentrate on a smaller set of elements,
the cost Is the legarithm of this set and
AOL of n.

25/35

DYNAMIC OPTIMALITY CONJECTURE:

Consider any seguence of successful acecesses
on an n-node search tree. Let A be any
algorithm; that carnres eUut each access hy
traversing| the: path firem: the reot ter the nede
containing the acecessed' tem, at a cost 6ff ene
plus; the depti of the nede containing the: item
and that between aceesses performs an
areitrany: nUMBEr ofi retations: anywWhere In; the
iree at a cost oif 0ne pPer rotation. Fhen the tetal
time:r 1o perdormi all accesses by splaying ISk ne
more than O(n) plus a censtant tiMes the time
required by algorithm A.

26/35

acecess (I, t): It iis in the tree t, return a
polnter te Its lecation, ethemnwvise returma
poInter te the nullnede:

We: search firom the: roet: te: nede: 1. i we
findi node x containing I, we splay: at x and
feturn; a pointer tor X, else wer will find a
AUl nede: (Indicating I IS Net In: the tree),
We' split te; the' I1ast nennull: nede: reached
and we' rettimr a polnter te aull.

27135

join (t;, t;): combine trees t; and t, into a single
tree containing all 1items from both trees and
feturn; the: resulting tree, assuming that all items in

ty are’ |ess than these il t; andl destreys bothl t;
and t;

VWEe acceess the largest element iNinit; and
Splay at'. We make: &5 the hght subtree
off I' anal retumns the: resulting tree.

29/35

split (I, t): construct two trees t, and t,, t;
contains all items In t less than or equal to) |
and t, contains all items In t greater than |
and destroy: t

We' perform: acecess(l,) and retuin’ the two
trees formed: By breaking eitner the' left link
o the rght link frem the new root ofi t,

depending onr Wheather: the: reot contalns an
item greater than! i e not greatels thami .

30/35

Insert(l, t): insert item |1 to tree f,
AssUmINg t IS not there alreaady

We' perdorm split(l;, t)r and then replace t vy a
tree consisting of a new roet node
containing 1, Whese left and right: subtrees
are the trees t and t; rettrned oy the split.

% sphi A A — &

31/35

delete(l, t): delete item I from
tree t, assuming It Is In the: tree

\We' perform: access(l,) and then replace
i Y the jein ofi 1ts |eft:and gt subtrees.

join
&= LON— an 0

32/35

Alternative definitions of insert and
delete

33/35

UPDATE LEMMA about the amortized
times of the previeus operations

access(i, 1):

jﬂf ﬂ(f is 1 2}:

splini, 1):

insert(i, t).

delete(i, 1)

if iisint

| 14 s ,
3 Iﬂg(mfn!w(i-), w(f+)}) + 1 if iisnotint.

3 !ﬂg(*(ﬂ) + 0(1) where i is the last item in t,.

3 log {£)+O(l) if iisint,

+ (1) if iisnotint.

3 log mintw(i—), w{r+]})

min{w(i=), w(i+)}

- w(i)
s log{) + 3 ()+ o

(o
(x

3o (= i)) lag(’:")) + oQ).
(5

fRne ena

	Splay Trees
	Need for Splay Trees
	Single Rotation
	Move to root (example)
	Move to root (example)
	Move to root (example)
	Need for Splay Trees
	Splaying
	Zig
	Zig-zig
	Zig-zag
	Notes
	Analysis of the performance of splaying
	Ranks
	About the potential
	Amortized complexity using potential
	Access Lemma
	Proof (cont.)
	Proof (cont.)
	Proof (cont.)
	Proof (cont.)
	BALANCE THEOREM: The total access time is O(m+(n+m)logn)
	STATIC OPTIMALITY THEOREM: The total cost of a sequence of m accesses is equal to .
	STATIC FINGER THEOREM: If f is any fixed item, the total access time is
	access (i, t): If i is in the tree t, return a pointer to its location, otherwise return a pointer to the null node.
	join (t1, t2): combine trees t1 and t2 into a single tree containing all items from both trees and return the resulting tree,
	split (i, t): construct two trees t1 and t2, t1 contains all items in t less than or equal to i and t2 contains all items in t
	insert(i, t): insert item i to tree t, assuming t is not there already
	delete(i, t): delete item i from tree t, assuming it is in the tree
	Alternative definitions of insert and delete
	UPDATE LEMMA about the amortized times of the previous operations

