
11

Splay TreesSplay Trees

Georgia Georgia KaouriKaouri

Advanced Data StructuresAdvanced Data Structures

22/35/35

Need for Splay TreesNeed for Splay Trees

We want to carry out a sequence of We want to carry out a sequence of
access operations on a BST. access operations on a BST.
To minimize the total access time, To minimize the total access time,
accessed items should be near the root.accessed items should be near the root.
Allen and Munro proposed two heuristics Allen and Munro proposed two heuristics
based on based on single rotationsingle rotation and and move to rootmove to root
actions. actions.

33/35/35

Single RotationSingle Rotation

44/35/35

Move to root (example)Move to root (example)

55/35/35

Move to root (example)Move to root (example)

66/35/35

Move to root (example)Move to root (example)

77/35/35

Need for Splay TreesNeed for Splay Trees

For each one, the time per access is For each one, the time per access is O(nO(n).).
Move to root has an asymptotic average Move to root has an asymptotic average
time per access within a constant factor of time per access within a constant factor of
minimum, supposing access probabilities minimum, supposing access probabilities
of the items are fixed and the accesses of the items are fixed and the accesses
are independent.are independent.
Not good enoughNot good enough……

88/35/35

SplayingSplaying

To splay a tree at node x (with parent To splay a tree at node x (with parent
p(xp(x), grandparent), grandparent q(xq(x)), we repeat the)), we repeat the
splaying step until x is the root.splaying step until x is the root.

zigzig
zigzig--zigzig
zigzig--zagzag

99/35/35

ZigZig

If If p(xp(x) is the root, rotate the edge joining) is the root, rotate the edge joining
x with x with p(xp(x).).

1010/35/35

ZigZig--zigzig
If If p(xp(x) is not the root and both x and) is not the root and both x and p(xp(x))
are left or right children, we first rotate are left or right children, we first rotate
the edge joining the edge joining p(xp(x) with) with q(xq(x) and then) and then
the edge joining x and the edge joining x and p(xp(x).).

1111/35/35

ZigZig--zagzag

If x is a left and If x is a left and p(xp(x) is a right child (or vice) is a right child (or vice--
versa), rotate the edge joining x with versa), rotate the edge joining x with p(xp(x) and) and
then rotate the edge joining x with then rotate the edge joining x with ““newnew”” p(xp(x))
(old (old q(xq(x)).)).

1212/35/35

NotesNotes

Each step has a mirror image variant that Each step has a mirror image variant that
covers all the cases.covers all the cases.
Only the Only the zigzig--zigzig step distinguishes splaying step distinguishes splaying
from rotation to the root.from rotation to the root.

1313/35/35

Analysis of the performance of Analysis of the performance of
splayingsplaying

Each node x has an arbitrary chosen positive Each node x has an arbitrary chosen positive
weightweight w(xw(x).).
Assigning different weights leads to a bound on Assigning different weights leads to a bound on
the cost of a sequence of accesses (better the cost of a sequence of accesses (better
bound when frequent elements have high bound when frequent elements have high
weight).weight).
sizesize of node x of node x s(xs(x)=)=Sum(overSum(over y in the y in the subtreesubtree
rooted at x) of rooted at x) of w(yw(y))
rankrank of node x of node x r(xr(x)=)=logs(xlogs(x))
potentialpotential of a tree is the sum of the ranks of all of a tree is the sum of the ranks of all
its nodesits nodes

1414/35/35

RanksRanks

Rank Rule:Rank Rule: Suppose two siblings have the Suppose two siblings have the
same rank r. Then the parent has rank at least same rank r. Then the parent has rank at least
r+1.r+1.
When a node has rank r, its size is at least 2When a node has rank r, its size is at least 2rr. So . So
the two siblings have total size at least 2the two siblings have total size at least 2(r+1)(r+1), so , so
the rank of their parent has rank at least r+1.the rank of their parent has rank at least r+1.
When a node x and its parent have the same When a node x and its parent have the same
rank r, the sibling of x must have rank <r. rank r, the sibling of x must have rank <r.

1515/35/35

About the potentialAbout the potential

When performing a rotation between When performing a rotation between
nodes x and y, only the ranks of nodes x nodes x and y, only the ranks of nodes x
and y are affected. and y are affected.
If y was the root of the tree before a If y was the root of the tree before a
rotation, then rotation, then r(yr(y)=)=rr’’(x(x).).
If for each node x in T If for each node x in T w(xw(x)=1, then the)=1, then the
potential of a balanced tree is potential of a balanced tree is O(nO(n) and of) and of
a long chain is a long chain is O(nlognO(nlogn).).

1616/35/35

Amortized complexity using Amortized complexity using
potentialpotential

a: amortized time of an operationa: amortized time of an operation
t: actual time of an operation (is equal to the t: actual time of an operation (is equal to the
number of rotations)number of rotations)
ΦΦ: potential before an operation: potential before an operation
ΦΦ’’: potential after an operation: potential after an operation

aa == tt ++ ΦΦ’’ -- ΦΦ
For a sequence of m operations:For a sequence of m operations:

1717/35/35

Access LemmaAccess Lemma
The amortized time to splay a tree with root t at a The amortized time to splay a tree with root t at a
node x is at most node x is at most

3(r(t)3(r(t)--r(x))+1=r(x))+1=O(log(s(t)/(s(xO(log(s(t)/(s(x))).))).

Proof: When there are no rotations, the bound is Proof: When there are no rotations, the bound is
obvious. obvious.
Suppose at least one rotation. Suppose at least one rotation.
Let s, sLet s, s’’, r, r, r, r’’ be the size and rank functions before be the size and rank functions before
and after the splaying step. and after the splaying step.
Let y be the parent of x and z the parent of y before Let y be the parent of x and z the parent of y before
the step (if it exists).the step (if it exists).
w(xw(x)=1 for all of the nodes of the tree)=1 for all of the nodes of the tree

1818/35/35

Proof (cont.)Proof (cont.)

ZigZig: One rotation takes place, so the amortized : One rotation takes place, so the amortized
time of the step is:time of the step is:

1+r1+r’’(x)+r(x)+r’’(y)(y)--r(x)r(x)--r(y) only r(y) only x,yx,y change rankschange ranks
≤≤ 1+r1+r’’(x)(x)--r(x) r(x) r(y)r(y)≥≥rr’’(y(y))
≤≤1+3(r1+3(r’’(x)(x)--r(x)) r(x)) rr’’(x)(x)≥≥r(xr(x))

1919/35/35

Proof (cont.)Proof (cont.)

ZigZig--ZigZig:Two:Two rotations are done, so:rotations are done, so:

2+r2+r’’(x)+r(x)+r’’(y)+r(y)+r’’(z)(z)--r(x)r(x)--r(y)r(y)--r(z)r(z)
= 2+r= 2+r’’(y)+r(y)+r’’(z)(z)--r(x)r(x)--r(y) r(y) rr’’(x(x)=)=r(zr(z))
≤≤2+r2+r’’(x)+r(x)+r’’(z)(z)--2r(x) 2r(x) rr’’(x)(x)≥≥rr’’(y(y) and) and r(y)r(y)≥≥r(xr(x))

Claim: 2+rClaim: 2+r’’(x)+r(x)+r’’(z)(z)--2r(x)2r(x)≤≤3(r3(r’’(x)(x)--r(x))r(x))
2r2r’’(x)(x)--r(x)r(x)--rr’’(z)(z)≥≥2 follows from the convexity of the log and 2 follows from the convexity of the log and
s(x)+ss(x)+s’’(z)(z)≤≤ss’’(x(x).).

2020/35/35

Proof (cont.)Proof (cont.)
ZigZig--ZagZag: Also 2 rotations:: Also 2 rotations:

2+r2+r’’(x)+r(x)+r’’(y)+r(y)+r’’(z)(z)--r(x)r(x)--r(y)r(y)--r(z)r(z)
≤≤2+r2+r’’(y)+r(y)+r’’(z)(z)--2r(x) 2r(x) rr’’(x(x)=)=r(zr(z) and) and r(x)r(x)≤≤r(yr(y))

ClaimClaim: 2+r: 2+r’’(y)+r(y)+r’’(z)(z)--2r(x)2r(x)≤≤2(r2(r’’(x)(x)--r(x)) r(x))
2r2r’’(x)(x)--rr’’(y)(y)--rr’’(z)(z)≥≥22
As in the As in the zigzig--zigzig case and also case and also ss’’(y)+s(y)+s’’(z(z)) ≤≤ss’’(x(x).).

2121/35/35

Proof (cont.)Proof (cont.)

Summing the amortized times estimates Summing the amortized times estimates
for all the splaying steps, and since the for all the splaying steps, and since the zigzig
step can only occur once, the lemma step can only occur once, the lemma
follows.follows.

Note that the Note that the zigzig--zigzig step is the most step is the most
expensive of the three.expensive of the three.

2222/35/35

BALANCE THEOREM: The total access time BALANCE THEOREM: The total access time
is is O(m+(n+m)lognO(m+(n+m)logn))

Proof: For item i (1Proof: For item i (1≤≤ii≤≤n) assign weights n) assign weights w(iw(i)=1/n.)=1/n.
Then the total weight is 1 and the rank of the root Then the total weight is 1 and the rank of the root
is 0. By Access Lemma the amortized cost of an is 0. By Access Lemma the amortized cost of an
access is bounded by 3logn+1 and summing over access is bounded by 3logn+1 and summing over
all accesses gives all accesses gives O(m+mlognO(m+mlogn).).
For a node i, the rank log(1/n)For a node i, the rank log(1/n)≤≤ r(i)r(i)≤≤0.0.
The net decrease in the potential is at most The net decrease in the potential is at most nlognnlogn
(since the net decrease in potential over a (since the net decrease in potential over a
sequence of steps is at most , where sequence of steps is at most , where

, because the size of node i is at most W , because the size of node i is at most W
and at least and at least w(iw(i)).)).

2323/35/35

STATIC OPTIMALITY THEOREM: The total cost of STATIC OPTIMALITY THEOREM: The total cost of
a sequence of m accesses is equal to .a sequence of m accesses is equal to .

Proof (sketch):Proof (sketch):
Assign weights to item i to be equal to Assign weights to item i to be equal to
q(i)/mq(i)/m..
q(iq(i)>0 is the access frequency of item i,)>0 is the access frequency of item i,
i.e. the total number of times item i is i.e. the total number of times item i is
accessed.accessed.
Note that m=Sum over i of Note that m=Sum over i of q(iq(i).).

2424/35/35

STATIC FINGER THEOREM: If f is any fixed STATIC FINGER THEOREM: If f is any fixed
item, the total access time is item, the total access time is

Proof (sketch):Proof (sketch):
Assign weight to item i equal to Assign weight to item i equal to
WW≤≤22ΣΣ((1/k1/k22))=O(1)=O(1)
Amortized time of the Amortized time of the jthjth access: O(log(|iaccess: O(log(|ijj--
f|+1))f|+1))
Net potential drop over the sequence: Net potential drop over the sequence:
O(nlognO(nlogn) (since the weight of any item is) (since the weight of any item is
at least 1/nat least 1/n22).).

2525/35/35

WORKING SET THEOREM:WORKING SET THEOREM:
Let Let t(jt(j) be the number of accesses of) be the number of accesses of
different items that occurred between different items that occurred between
access j and the previous access of the access j and the previous access of the
same item. Then the total access time is same item. Then the total access time is
O(nlogn+mO(nlogn+m++ΣΣmmlog(t(j)+1)).log(t(j)+1)).

The theorem states that if accesses The theorem states that if accesses
concentrate on a smaller set of elements, concentrate on a smaller set of elements,
the cost is the logarithm of this set and the cost is the logarithm of this set and
not of n.not of n.

2626/35/35

DYNAMIC OPTIMALITY CONJECTURE:DYNAMIC OPTIMALITY CONJECTURE:
Consider any sequence of successful accesses Consider any sequence of successful accesses
on an non an n--node search tree. Let A be any node search tree. Let A be any
algorithm that carries out each access by algorithm that carries out each access by
traversing the path from the root to the node traversing the path from the root to the node
containing the accessed item, at a cost of one containing the accessed item, at a cost of one
plus the depth of the node containing the item plus the depth of the node containing the item
and that between accesses performs an and that between accesses performs an
arbitrary number of rotations anywhere in the arbitrary number of rotations anywhere in the
tree at a cost of one per rotation. Then the total tree at a cost of one per rotation. Then the total
time to perform all accesses by splaying is no time to perform all accesses by splaying is no
more than more than O(nO(n) plus a constant times the time) plus a constant times the time
required by algorithm A.required by algorithm A.

2727/35/35

access (i, t):access (i, t): If i is in the tree t, return a If i is in the tree t, return a
pointer to its location, otherwise return a pointer to its location, otherwise return a

pointer to the null node.pointer to the null node.

We search from the root to node i. If we We search from the root to node i. If we
find node x containing i, we splay at x and find node x containing i, we splay at x and
return a pointer to x, else we will find a return a pointer to x, else we will find a
null node (indicating i is not in the tree), null node (indicating i is not in the tree),
we split to the last we split to the last nonnullnonnull node reached node reached
and we return a pointer to null. and we return a pointer to null.

2828/35/35

2929/35/35

join (tjoin (t11, t, t22):): combine trees tcombine trees t11 and tand t22 into a single into a single
tree containing all items from both trees and tree containing all items from both trees and
return the resulting tree, assuming that all items in return the resulting tree, assuming that all items in
tt11 are less than those in tare less than those in t22 and destroys both tand destroys both t11
and tand t22

We access the largest element i in tWe access the largest element i in t11 and and
splay at i. We make tsplay at i. We make t22 the right the right subtreesubtree
of i and return the resulting tree.of i and return the resulting tree.

3030/35/35

split (i, t):split (i, t): construct two trees tconstruct two trees t11 and tand t22, t, t11
contains all items in t less than or equal to i contains all items in t less than or equal to i
and tand t22 contains all items in t greater than i contains all items in t greater than i
and destroy tand destroy t
We perform We perform access(iaccess(i, t) and return the two , t) and return the two
trees formed by breaking either the left link trees formed by breaking either the left link
or the right link from the new root of t, or the right link from the new root of t,
depending on depending on wheatherwheather the root contains an the root contains an
item greater than i or not greater than i. item greater than i or not greater than i.

3131/35/35

insert(iinsert(i, t):, t): insert item i to tree t, insert item i to tree t,
assuming t is not there alreadyassuming t is not there already

We perform We perform split(isplit(i, t) and then replace t by a , t) and then replace t by a
tree consisting of a new root node tree consisting of a new root node
containing i, whose left and right containing i, whose left and right subtreessubtrees
are the trees tare the trees t11 and tand t22 returned by the split.returned by the split.

3232/35/35

delete(idelete(i, t):, t): delete item i from delete item i from
tree t, assuming it is in the treetree t, assuming it is in the tree

We perform We perform access(iaccess(i, t) and then replace , t) and then replace
t by the join of its left and right t by the join of its left and right subtreessubtrees..

3333/35/35

Alternative definitions of insert and Alternative definitions of insert and
deletedelete

3434/35/35

UPDATE LEMMA about the amortized UPDATE LEMMA about the amortized
times of the previous operationstimes of the previous operations

3535/35/35

The endThe end

	Splay Trees
	Need for Splay Trees
	Single Rotation
	Move to root (example)
	Move to root (example)
	Move to root (example)
	Need for Splay Trees
	Splaying
	Zig
	Zig-zig
	Zig-zag
	Notes
	Analysis of the performance of splaying
	Ranks
	About the potential
	Amortized complexity using potential
	Access Lemma
	Proof (cont.)
	Proof (cont.)
	Proof (cont.)
	Proof (cont.)
	BALANCE THEOREM: The total access time is O(m+(n+m)logn)
	STATIC OPTIMALITY THEOREM: The total cost of a sequence of m accesses is equal to .
	STATIC FINGER THEOREM: If f is any fixed item, the total access time is
	access (i, t): If i is in the tree t, return a pointer to its location, otherwise return a pointer to the null node.
	join (t1, t2): combine trees t1 and t2 into a single tree containing all items from both trees and return the resulting tree,
	split (i, t): construct two trees t1 and t2, t1 contains all items in t less than or equal to i and t2 contains all items in t
	insert(i, t): insert item i to tree t, assuming t is not there already
	delete(i, t): delete item i from tree t, assuming it is in the tree
	Alternative definitions of insert and delete
	UPDATE LEMMA about the amortized times of the previous operations

