CTR + CBC-MAC (CCM)

Petros Potikas
NTUA
Number Theory and Cryptography

Intro

- About block cipher and combined modes
- Authenticated encryption
- Nonce-using symmetric encryption scheme

Attractive properties

1. Certain parts of message are authenticated only and not encrypted.
2. The underlying block cipher is used only in the forward “encryption” direction, e.g. an arbitrary pseudo-random function can be used.
3. Uses well-known technologies (+20 years)
4. All intellectual property rights are public released.

Description

- CTR + CBC-MAC provides privacy and authenticity
- CCM is based on a pseudo-random function

\[
E : \{0,1\}^{k_0} \times \{0,1\}^{k_b} \rightarrow \{0,1\}^{k_s}
\]

- \(k_0\): key bit length
- \(k_b\): block bit length

Overview

- The parties exchange a secret key, chosen uniformly at random from the set \(\{0,1\}^{k_0}\)
- Input: \((N, H, M)\)
- \(N\): nonce, fixed bit length \(k_n < k_b\)
- \(H\): header, only authenticated, not encrypted
- \(M\): message, authenticated and encrypted
- An authentication tag \((k_r \leq k_b)\) is derived via CBC-MAC and encrypted together with the message via CTR

Output: A ciphertext of length \(|M| + k_t\)
Overview (cont’d)

- Nonce is non-repeating (“fresh”) during the lifetime of a key.
- Restrictions on input:
 - Lengths of header and message might be upper-bounded by a constant
 - A multiple of 8 or the block length

\[V = \{ \text{all valid inputs} \} \]

\((N, H, M) \)

\[\pi(i, N, H, M) \neq \pi(i', N', H', M') \]

\(B_0 \)

\(B_0 \)

CTR encryption

Input \((N, H, M) \), generates input blocks of CTR

\[A_i = \pi(i, N, H, M) \]

\(k \), leftmost bits of \(E_k(A_i) \) are used for encryption of the tag, while the \(|M| \) leftmost bits of the string \(E_k(A_0), E_k(A_1), E_k(A_2), \ldots \) are used for the encryption of the message \(|M| \)

CBC-MAC computation

- Encoding function \(\beta \)

\[\beta: V \rightarrow W^* \]

where \(W = \{0, 1 \}^k \)

- Output: \(B = B_0 \cdot B_1 \cdot \ldots \cdot B_r \)

- A tag \(T \) is derived by applying CBC-MAC to these blocks.

- \(B_0 \) is the CBC-MAC pre-IV

CTR encryption

- Encrypt the message \(M \) and the CBC-MAC tag \(T \).

- Use a CTR block-generator \(\pi = \pi(i, N, H, |M|) \) such that \(N \) and counter \(i \) can be uniquely determined by the CTR block generator.

\[N \in \{0, 1 \}^k \quad \text{and} \quad 0 \leq i \leq \mu_{max} \quad \text{where} \quad \mu_{max} \quad \text{is scheme-specific parameter, determine the maximum number of message blocks} \quad \text{number of blocks} \leq \mu_{max} \cdot 2^k \]

Overview (cont’d)

- Restrictions on input:

 - Lengths of header and message might be upper-bounded by a constant
 - A multiple of 8 or the block length

\[V = \{ \text{all valid inputs} \} \]

\((N, H, M) \)

\[\pi(i, N, H, M) \neq \pi(i', N', H', M') \]

\(B_0 \)

\(B_0 \)

CTR encryption

- Let \(\beta_0(N, H, M) \) be equal to the first block \(B_0 \) of \(\beta(N, H, M) \). We require that

\[\pi(i, N, H, M) \neq \beta_0(N', H', M') \]

for all valid \((N, H, M), (N', H', M') \) and \(0 \leq i \leq \mu_{max} \)

- The nonce being non-repeating implies that all CTR input blocks \(A_i \), and all CBC-MAC pre-IV’s \(B_0 \) used during the lifetime of a key are distinct.
CCM Specification

- CBC-MAC computation:
 - Let $B_0, B_1, \ldots, B_r = \beta(N, H, M)$
 - Let $Y_0 = E_K(B_0)$
 - For $0 \leq i \leq r$, let $Y_i = E_K(Y_{i-1} \oplus B_i)$
 - Let T be equal to the k_1 leftmost bits of Y_r

- CTR encryption:
 - Let $\mu = \lfloor |M|/k_0 \rfloor$
 - For $0 \leq i \leq \mu$, $A_i = \pi(i, N, H, M)$
 - Let S be equal to the $|M|$ leftmost bits of S_1, \ldots, S_m and S' the $|T|$ leftmost bits of S_0
 - Let $C = [M \oplus S], [T \oplus S']$

Example (cont'd)

- Block cipher: AES, proposed in IEEE 802.11
- Block length $k_0 = 128$
- Key length, $k_0 = 128, 192, 256$
- All strings are of length a multiple of 8
- $k_1 = 32(16 \ldots 128$
- $k_2 = 56(8) \ldots 112$
- Number of octets in a message $\leq 2^{120-k_1}-1$
- $k_{max} = 120-k_n$, $\mu_{max} = 2^{k_{max}}-4$
- Each block contains 2^4 octets
- Input is valid if $N \in \{0,1\}^{k_0}$, $0 \leq |H|/8 < 2^{16}$, $0 \leq |M|/8 < 2^{k_{max}}$

Example (cont’d)

- N is uniquely determined by B_0
- β is prefix free
- Input (N, H, M) is uniquely determined by $\beta(N, H, M)$, because of the inclusion of the octet length of H and M

Example (Decryption)

CCM decryption of a ciphertext C with nonce N and header H:
1. Apply the reverse of step 2 to C to obtain a message M and a CBC-MAC tag T (the CTR block generator is applied on $(N, H, |C| - k_1)$).
2. Apply CBC-MAC to the obtained message M to get a tag T'. If $T = T'$, then T is valid, and M is output. Otherwise, T is not valid, and an error is output.

Note: The decryption operation must not release the message or any part of it, until the the tag has been verified.

Example (cont’d)

- $B_0 = (0b)_2, (k/16-1)_3, (k_{max}/8-1)_3, (N)_{k_2}, (|M|/8)_{k_{max}}$
 - $b = 0$, if H is the empty string, 1 o.w. and the two leftmost octets of B_0, are equal to the $|H|/8$.
 - Let $L_H = [|H|/8]_{16}$ if $|H| > 0$, o.w. the empty string then $\beta(N, H, M) = B_0 \cdot L_H \cdot H \cdot Z_1 \cdot M \cdot Z_2$
 - where Z_1 and Z_2 are strings with zeros, such that $L_H \cdot H \cdot Z_1$ and $M \cdot Z_2$ are multiples of the block length 128.

Example (cont’d)

- The CTR block generator is defined as $\pi(i, N) = (00000)_2, (k_{max}/8-1)_3, (N)_{k_2}, (i)_{k_{max}}$

This cannot be equal to a CBC-MAC pre-IV B_0; the first five bits in B_0 are not all equal to zeros, since $(k/16-1)$ is nonzero.
Security analysis - Privacy

Goal of the adversary: distinguish the ciphertexts from random gibberish (a bit string chosen uniformly at random from the set of all possible bit strings of a specified length)

N is required to be fresh, so CTR input blocks and the CBC-MAC pre-IV's are new and distinct.

The output ciphertext is very close to random gibberish even if the adversary knows the plaintext.

Two attacks:
I. A “birthday” attack: All input blocks of CTR are distinct, so no collisions appear among the output blocks, but true random gibberish will contain block collisions, with probability $O(q^2)2^{-b}$ (q number of applications of the block cipher)
II. An anomaly can occur inside the CBC-MAC computations (e.g. an internal collision or a tag to coincide with some CTR output block). This happens with probability $O(q^2)2^{-b}$

Security analysis - Authenticity

Possible to tell anything non-trivial about internal block of the CBC-MAC computation has probability $O(q^2)2^{-b}$ even if all plaintexts are known.

Unless q is very large, the adversary knows close to nothing about the internal block, so modifying any previous encryption query, results in unpredictable modification of the tag.

As β is prefix-free, any forgery attempt $B_0.B_1.\cdots$ is unique. If there is a previous encryption query, then they must differ at some point.

Guess the tag: probability less than 2^{-k}.