
Chapter 1

Abstract Complexity

1.1 Introduction

Time complexity: T (n) where n: input size.

T (n) = max{#steps for input x | |x| = n}

Definition 1.1.1. If there exists a polynomial p such that: ∀n, T (n) ≤ p(n)
(T (n) = O(poly)) then the algorithm is efficient (Edmonds 1968).

1.2 Optimization Problems

For each instance x there is a set of feasible solutions F (x). To each
s ∈ F (x), we assign, using an objective function c, a positive integer c(s). We
search for the solution s ∈ F (x), for which c(s) is minimum (or maximum).

Example: Traveling Salesperson Problem: Given a finite set C = {c1, c2,
. . . , cn} of cities and a distance d(ci, cj) ∈ Z+, ∀(ci, cj) ∈ C2. We ask for a
tour that passes exactly one time through each city and comes back to the
original city, with minimum total distance.

1.3 Decision Problems

Decision problems have answers of the form: ‘yes’ or ‘no’. For each
optimization problem, we can create a corresponding decision problem:

Example 1.3.1. ‘Given graph G(V,E). What is the maximum size clique
in G?’: an optimization problem.

The corresponding decision problem: ‘Given graph G(V,E) and a number
k. Is there a clique with k (or more) nodes in G?’

1

2 Chapter 1. Abstract Complexity

1.4 Decision problems and languages

One of the reasons we consider decision problems is that they are related
to formal languages.

For an encoding e of the input, using the alphabet Σ, we associate the
following language with the decision problem Π:

L(Π) = {x ∈ Σ∗ | x is a representation of a ‘yes’ instance of problem Π },

when encoding e is used.

1.5 Classes P and NP

P (Polynomial): class of problems solvable in polynomial time by some
deterministic algorithm.

P = {L | ∃ polynomial time DTM that decides language L}

NP (Non-deterministic Polynomial Time): class of problems solvable in
polynomial time by some non deterministic algorithm.

Example 1.5.1. Searching in a non sorted array a[n]. Deterministically,
time Θ(n) is needed. Non deterministically, we just need Θ(1) time:

choose a[i]

verify : if a[i]=x then found

Example 1.5.2. Sorting n elements. Deterministically we need Θ(n log n)
time. Non deterministically, time Θ(n) is needed:

choose a permutation

verify : a[i]<a[i+1] for all i

In general, for the hard problems in NP, finding a solution is slow, but
checking the correctness of a proposed solution is fast.

Example 1.5.3. SAT: Given variables xi taking the values True or False.
We define:

• literals: terms xi,¬xi,

• clauses: disjunctions of literals literal1 ∨ literal2 ∨ . . . ∨ literalm

1.5 Classes P and NP 3

• CNF (Conjunctive Normal Form):

clause1 ∧ clause2 ∧ . . . ∧ clausen

The Satisfiability problem:

SAT
Given: A boolean formula in CNF.
Question: Is there an assignment that satisfies the formula (i.e.,
the formula evaluates to True)?

Deterministically, we need O(2n) time (exponential). Non deterministi-
cally, we can solve the problem in polynomial time:

• Choose a truth assignment.

• Check if the assignment satisfies the boolean formula.

A NDTM accepts, if there is at least one accepting computation path.
The time complexity of a NDTM program is defined:

T (n) =

max
|x|=n

{min # steps for accepting x}, if x acceptable

1, otherwise

A NDTM program M is of polynomial time if:

∃ polynomial p : T (n) ≤ p(n), ∀n

NP = {L | ∃ a polynomial time NDTM that decides language L}

1.5.1 Relation between P and NP

Obviously: P ⊆ NP .

A non deterministic polynomial time algorithm can be simulated by a
deterministic one using exponential time: NP ⊆ DEXPTIME.

Most researchers believe that P is different from NP , but this is still an
open problem.

4 Chapter 1. Abstract Complexity

1.6 Reductions

Definition 1.6.1 (Karp reduction or transformation).

A ≤P
m B : ∃f ∈ FP, ∀x(x ∈ A ⇐⇒ f(x) ∈ B)

Definition 1.6.2 (Log-space reduction).

A ≤L
m B : ∃f ∈ FL, ∀x(x ∈ A ⇐⇒ f(x) ∈ B)

We have A ≤L
m B =⇒ A ≤P

m B, but not the converse.

Definition 1.6.3. Class C is closed under reduction ≤ if

A ≤ B ∧ B ∈ C =⇒ A ∈ C.

Definition 1.6.4 (Hardness). A is C-hard, under ≤, if:

∀B ∈ C : B ≤ A.

Definition 1.6.5 (Completeness). A is C-complete, under ≤, if:

A is C − hard under ≤ ∧ A ∈ C.

So a problem L is NP-complete under ≤p
m if:

(L ∈ NP) ∧ (∀L′ ∈ NP : L′ ≤p
m L)

NP-complete problems are the hardest of classNP . If anNP-complete
problem is proved to be in P, then all problems in NP are in P, i.e., P = NP.

Lemma 1.6.6. If L1 ≤p
m L2, L1 is NP-complete and L2 ∈ NP then L2 is

NP-complete.

The lemma indicates the way we use reduction; we try to reduce a known
NP-complete problem to another problem in NP, thus showing that the latter
problem is P-complete too. In order to do that, we need to know some NP-
complete problem to start from, and then reduce it to other NP problems.
This ‘first’ NP-complete problem was given by Cook with his theorem.

1.6.1 Cook’s Theorem

SAT problem
Given: A boolean formula in CNF.
Question: Is the boolean frmula satisfiable?

1.6 Reductions 5

Example 1.6.7.

• Formula (x1∨¬x2)∧ (¬x1 ∨x2) is satisfiable. A satisying truth assign-
ment is (x1, x2) = (T, T).

• Formula (x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ ¬x1 is not satisfiable.

Theorem 1.6.8 (Cook). The SAT problem is NP-complete.

Proof. Obviously SAT is in NP: Choose non-deterministically a satisfying
assignment and check (in polynomial time) if the formula evaluates to true.
Next, we must prove that all problems in NP can be reduced to SAT. In
fact, we prove: that any computation of a polynomial time NDTM M can
be represented by a boolean formula Φ of polynomial length, such that:

There is a computation ofM that accepts x iff there is a satisfying
assignment for boolean formula Φ(x).

Initially, the head of the NDTM is at position 0 and only positions from
−p(n) to p(n) can be written because M is polynomial time. Computation
ends after p(n) steps.

Possible states of the TM:

Q = {q0, q1, . . . , qr}, q1 = qY , q2 = qN

Possible symbols of the TM:

Γ = {s0, s1, . . . , sv}, s0 = blank

Boolean variables of the formula Φ:

• Q[i, k], 0 ≤ i ≤ p(n), 0 ≤ k ≤ r: At step i (point of time i) TM is in
state qk. ((r + 1) · (p(n) + 1) many).

• H[i, j], 0 ≤ i ≤ p(n), −p(n) ≤ j ≤ p(n) At step i the head is at
position j. ((p(n) + 1) · (2p(n) + 1) many).

• S[i, j, l], 0 ≤ i ≤ p(n), −p(n) ≤ j ≤ p(n), 0 ≤ l ≤ v: The symbol at
position j, at step i, is sl. ((p(n) + 1) · (2p(n) + 1) · (v + 1) many).

Number of variables: O(p2(n)) (because r, v are constants for a specific
NDTM), i.e., polynomial w.r.t. n.

Clauses of formula Φ(x) are divided in 6 groups:

6 Chapter 1. Abstract Complexity

• G1: For all i, at step i, the TM is at exactly one state:

∧
p(n)
i=0 ((∨

r
j=0Q[i, j]) ∧ (∧r

j=0 ∧
j−1
k=0 (¬Q[i, j] ∨ ¬Q[i, k]))) (1.1)

Total number of literals in those clauses:

(p(n) + 1) · [(r + 1) +
r(r + 1)

2
· 2] = (p(n) + 1) · (r + 1)2 = O(p(n))

• G2: At step i, the TM’s head is at exactly one position:

∧
p(n)
i=0 ((∨

p(n)
j=−p(n)H[i, j])∧ (∧

p(n)
j=−p(n)∧

j−1
k=−p(n) (¬H[i, j]∨¬H[i, k]))) (1.2)

Total number of literals in those clauses:

(p(n) + 1) · (2p(n) + 1)2) = O(p3(n))

• G3: At step i, every position in the tape, contains exactly one symbol:

∧
p(n)
i=0 ∧

p(n)
j=−p(n)((∨

v
l=0S[i, j, l])∧(∧

v
l=0∧

l−1
k=0(¬S[i, j, l]∨¬S[i, j, k]))) (1.3)

Total
(p(n) + 1) · (2p(n) + 1) · (v + 1)2 = O(p2(n))

• G4: At step 0, the TM is at the initial configuration: state is q0 : Q[0, 0],
head at position 1: H[0, 1], in positions 1 to n of the tape is the input
x: S[0, 1, l1]∧S[0, 2, l2]∧. . .∧S[0, n, ln], for x = Sl1 , Sl2 , . . . Sln , all other
positions are blank. Total number of literals: 2p(n) + 3 = O(p(n)).

• G5: This group has just one literal that says that the computation is
accepting: the state is q1 = qY at the end of the computation, i.e.:

Q[p(n), 1]

• G6: (a) The content of the tape at position j, cannot be changed at
step i+ 1, if at step i the head was not at position j:

(¬H[i, j] ∧ S[i, j, l]) → S[i+ 1, j, l],

or equivalently:

{

(H[i, j] ∨ ¬S[i, j, l]) ∨ S[i+ 1, j, l]

0 ≤ i ≤ p(n),−p(n) ≤ j ≤ p(n), 0 ≤ l ≤ v

1.6 Reductions 7

(b) The TM’s configuration at step i + 1 is derived from applying the
the TM’s transition function δ on the configuration at step i:

(H[i, j] ∧Q[i, k] ∧ S[i, j, l]) →

∨
|δ(qk,sl)|
m=1 (H[i+ 1, j +∆m] ∧Q[i+ 1, k′

m] ∧ S[i+ 1, j, l′m]) (1.4)

(qk′m , sl′m , ∆m) ∈ δ(qk, sl), where∆m ∈ {−1, 0, 1}.

Total number of literals in G6: O(p2(n)).

The final formula is

Φ(x) = G1 ∧G2 ∧G3 ∧G4 ∧G5 ∧G6

Length: O(p3(n))

If there is a computation of the NDTM M that accepts x in time p(n),
then Φ(x) is satisfiable, by construction. Conversely, if Φ(x) is satisfiable,
then this satisfying truth assignment corresponds to a computation of M
that accepts x. Thus SAT is NP-complete. ⊓⊔

Definition 1.6.9 (Cook reduction).

A ≤P
T B : A ∈ PB

i.e A can be computed in polynomial time by a DTM that uses an oracle for
B, by putting strings on an extra tape, called the query tape, and obtaining
membership answer for set B by the oracle, an outside agent who can an-
swers, correctly and for free, any questions about membership to B.

Facts:
A ≤P

m B ⇒ A ≤P
T B

B is NP-Complete w.r.t ≤P
m ⇒ B is NP-Complete w.r.t ≤P

T

.

Chapter 2

Transformations of problems

2.1 Introduction

Sometimes we transform the original problem to another problem, for
which we can easily find the solution. Afterwards we transfer the solution to
the original problem.

Example
Given: A chessboard 3× 3 with black (X) and white(O) knights as
you see in figure 2.1.
Question: How can we swap the positions of the white and the
black knights using legal moves?

X

O

X

O

Figure 2.1: Knight Problem on Chessboard

Solution: It is enough to number positions on the chessboard based on the
possibility of moves, see figure 2.2.

1 3

7 5

6

4 8

2

Figure 2.2: Numbering of chessboard 3× 3

We build a ring as we see in figure 2.3. The black knights are in position
1, 3 and the white in position 5, 7. The solution is now obvious.

9

10 Chapter 2. Transformations of problems

O

X

O

X

48

6

2
1

7 5

3

Figure 2.3: Transformation of the knight problem

Here we use the reduction method in order to show a problem is difficult
to solve: We reduce with an easy transformation, a known hard problem to
our new problem and that shows that it is also hard.

In order to show that problem Π is NP-complete we follow the steps:

1. show Π ∈ NP .

2. Choose a known NP-complete problem Π ′ and constructing a function
f , transform it to problem Π.

3. Show that the transformation f can be done in polynomial time

4. Prove that: x ∈ Π ′ ⇐⇒ f(x) ∈ Π.

We will demonstrate the reductions of problems as shown in figure 2.4.
Historically, most of them were presented by Karp (1972).

Any NP

problem
SAT 3SAT 3DM

VC

HC TSP

Clique
Subgraph

Isomorphism

Partition DKnapsack

3-Graph Colorability

Cook

Figure 2.4: Reductions of problems in NP

2.2 Definitions of Decision Problems 11

2.2 Definitions of Decision Problems

SAT (SATISFIABILITY)
Given: A boolean formula in CNF.
Question: Is the boolean expression satisfiable? I.e., does there
exist a truth assignment so that the boolean formula obtains the
value True.

3SAT
Given: A boolean formula in CNF, so that every clause has exactly
3 literals.
Question: Is the boolean formula satisfiable?

VC (VERTEX COVER)
Given: A graph G(V,E) and a positive integer k ≤ |V |.
Question: Does there exist a vertex cover of all the edges of E, of
size ≤ k; i.e., does there exist a set V ′ ⊆ V such that |V ′| ≤ k and
∀{u, v} ∈ E : u ∈ V ′ ∨ v ∈ V ′;

3DM (3-DIMENSIONAL MATCHING)
Given: A set M ⊆ W ×X ×Y , were W,X, Y are disjoint sets with
|W | = |X| = |Y | = q.
Question: Does M contain a matching; i.e., Does there exist a set
M ′ ⊆ M such that |M ′| = q and any 2 elements of M ′ have no
common coordinate?

GRAPH 3-COLORABILITY
Given: Given a graph G(V,E).
Question: Can we color the nodes of the graph G using 3 colors so
that any adjacent nodes have different colors? I.e., Does there exist
a function f : V → {0, 1, 2} such that, ∀(u, v) ∈ E : f(u) 6= f(v)?

HC (Hamilton Circuit)
Given: A graph G(V,E).
Question: Does the graph have a Hamilton Cycle? I.e., does there
exist a permutation of all nodes of graph G, 〈v1, v2, . . . , vn〉 , n =
|V |, such that

(vi, vi+1) ∈ E, 1 ≤ i ≤ n− 1, and (vn, v1) ∈ E;

12 Chapter 2. Transformations of problems

TSP (TRAVELING SALESMAN PROBLEM)
Given: A complete graph G(V,E) with weights and a number B.
Question: Does there exist a tour that goes through all the nodes
of G, < vπ(1)

, vπ(2)
, . . . , vπ(m)

> such that:

∑

w(vπ(i)
, vπ(i+1)

) + w(vπ(m)
, vπ(1)

) ≤ B;

CLIQUE
Given: A graph G(V,E) and a positive integer j ≤ |V |.
Question: Does the graph G contain a clique of size ≥ j? I.e., Does
there exist V ′ ⊆ V , such that: |V ′| ≥ j and ∀u, v ∈ V ′ : (u, v) ∈ E;
Or equivalently: Does the graph G contain a complete subgraph
with number of nodes ≥ j;

SUBGRAPH ISOMORPHISM
Given: Two graphs G(V1, E1) and H(V2, E2).
Question: Does graph G contain a subgraph which is isomorphic to
H? I.e., do there exist V ⊆ V1, E ⊆ E1 such that |V | = |V2|, |E| =
|E2| and a function f : V2 → V , 1-1 and onto (bijection) such that:
(u, v) ∈ E2 ⇐⇒ (f(u), f(v)) ∈ E;

PARTITION
Given: A finite set A with weights, w(a) ∈ Z+, ∀a ∈ A.
Question: Is it possible to split the set A into two subsets of equal
total weight ? I.e., does there exist A′ ⊆ A such that,

∑

a∈A′

w(a) =
∑

a∈(A−A′)

w(a);

DKNAPSACK (DISCRETE KNAPSACK)
Given: A finite set U , with a weight function w(u) ∈ Z+, ∀u ∈ U ,
a cost function p(u) ∈ Z+, ∀u ∈ U and two positive integers W,P .
Question: Can we take some objects from set U and put them in
the knapsack so that the total weight of the knapsack ≤ W and the
total value ≥ P? I.e., does there exist a U ′ ⊆ U such that,

∑

u∈U ′

w(u) ≤ W and
∑

u∈U ′

p(u) ≥ P ;

2.3 Reduction of SAT to 3SAT 13

2.3 Reduction of SAT to 3SAT

Theorem 2.3.1. 3SAT is NP-complete.

Proof. It is easy to see 3SAT ∈ NP . A nondeterministic algorithm can
guess a truth assignment and then verify in polynomial time if it satisfies the
boolean formula.

To show that 3SAT is NP-complete, we will reduce SAT to it (SAT ≤p
m

3SAT). Assume that an instance of SAT is given, i.e a set C of m clauses,
C = {c1, c2, . . . , cm} that use variables from a set of n variables, U =
{z1, z2, . . . , zn}. We construct a new set of clauses C ′ and a new set of new
variables V ′, so that every clause in C ′ has exactly 3 literals.

• For every clause c ∈ C of the original formula that consists of 1 literal
c = z, construct the following 4 clauses (Variables y1 and y2 are new ,
not in C):

(z ∨ y1 ∨ y2) ∧ (z ∨ y1 ∨ ¬y2) ∧ (z ∨ ¬y1 ∨ y2) ∧ (z ∨ ¬y1 ∨ ¬y2)

It is easy to see that the value of this expression is always the same as
the value of z, independent of the values of y1, y2 (dummy variables).

• For every clause c ∈ C of the original formula that consists of 2 literals
c = z1 ∨ z2, construct the following 2 clauses (new variable y1):

(z1 ∨ z2 ∨ y1) ∧ (z1 ∨ z2 ∨ ¬y1)

• Every clause of the original formula that consists of 3 literals is taken
as it is in the new formula.

• Finally, for every clause of the original formula that has more than 3
lterals, i.e c = (z1 ∨ z2 ∨ . . . zk), construct the following clauses (yi new
variables):

(z1 ∨ z2 ∨ y1) ∧ (¬y1 ∨ z3 ∨ y2) ∧ (¬y2 ∨ z4 ∨ y3) ∧ . . .

∧ (¬yk−4 ∨ zk−2 ∨ yk−3) ∧ (¬yk−3 ∨ zk−1 ∨ zk)

If the length of the original Φ (size of the input) is n · m (m clauses
with n at most literals each), then the length of formula Φ′, will be 3m(n−
2), i.e m(n − 2) clauses with 3 literals each; i.e., the length of Φ′ will be
O(m · n), polynomial with respect to the length of formula Φ and thus the
transformation can be done in polynomial time. It remains to show that the
original formula Φ has a satisfying truth assignment iff the new formula Φ′

has a satisfying assignment (easy). ⊓⊔

14 Chapter 2. Transformations of problems

Remark 2.3.2. Problem 2SAT belongs to P.

Another subproblem of SAT , that belongs to P , is HORNSAT. The given
boolean formula consists of Horn clauses. We call Horn clause a clause that
has at most one positive literal. i.e., all literals except possibly one , are
negative, e.g:

(¬x2 ∨ x3), (¬x1 ∨ ¬x2 ∨ ¬x3), (¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4)

The clauses having exactly one positive literal (as in the first and last exam-
ple), are called implications because they can be written as : (¬x2 ∨ x3) =
(x2 → x3), (¬x1∨¬x2∨¬x3∨x4) = ((x1∧x2∧x3) → x4). The algorithm solv-
ing HORNSAT is based exactly on this implicational form of the clauses.
A Prolog program consists of Horn clauses.

2.4 Reduction of 3SAT to other problems

In general, when we reduce 3SAT to any other problem, our given data is
a set of variables u1, . . . , un and a set of clauses c1, . . . , cm. Elements needed
in our reduction :

• Truthsetting: Make sure that each variable has a unique truth value in
all clauses.

• Satisfaction: Make sure that each clause contains at least one satisfiable
literal.

• Remaining (interconnections)-garbage collection: Make sure we have a
correct problem of the new type.

2.5 Reduction of 3SAT to VERTEX

COVER

Theorem 2.5.1. VERTEX COVER (VC) is NP-complete.

Proof. It holds that V C ∈ NP . We will show that VC is NP-complete by
reducing 3SAT to it (3SAT ≤p

m V C).
We are given a set of clauses C = {c1, . . . , cm} with variables from a

set of variables U = {u1, . . . , un}. We will construct a graph G(V,E) and
a positive k ≤ |V | such that G has a vertex cover of size ≤ k iff formula
(c1 ∧ c2 ∧ . . . ∧ cm) is satisfiable .

2.5 Reduction of 3SAT to VERTEX COVER 15

• For every variable ui ∈ U introduce 2 nodes in V , ui,¬ui and 1 edge
in E, (ui,¬ui). That is, totally we get 2n nodes and n edges. This is
truthsetting.

• For every clause ci ∈ C introduce 3 nodes in V , c1[i], c2[i], c3[i] and
3 edges in E, (c1[i], c2[i]), (c2[i], c3[i]), (c3[i], c1[i]). That is, totally we
have 3m new nodes and 3m edges(this is satisfaction).

• Finally we add edges needed so that each triangle (satisfaction) is con-
nected with 3 corresponding (truthsetting) literals and the new problem
should be VERTEX COVER (remaining interconnections). For every
node ck[i], 1 ≤ k ≤ 3, we add the edge (ck[i], uj) or (ck[i],¬uj) depend-
ing whether in the k-th position of clause ci there is a literal uj or ¬uj

respectively. The number of new edges is 3m (3 for every clause).

The number of the nodes of the graph is |V | = 2n+3m, and the number
of edges is |E| = n + 6m. The size of the graph is polynomial with respect
to the size of the given formula Φ (3m) and the construction can be done in
polynomial time. We define k = n + 2m. We claim that the formula of the
3SAT problem is satisfiable iff there exists a vertex cover of size ≤ k in the
graph G(V,E). ⊓⊔

u1 ¬u1 u2 ¬u2 u3 ¬u3 u4 ¬u4

c1[1] c1[2]

c2[1] c3[1] c2[2] c3[2]

Figure 2.5: Reduction of 3SAT to VERTEX COVER

Example: We are given the formula

Φ : (u1 ∨ ¬u3 ∨ ¬u4) ∧ (¬u1 ∨ u2 ∨ ¬u4)

Φ is satisfiable. e.g t(u1, u2, u3, u4) = (T, T, T, T). Thus the graph G(V,E)
that is derived from this formula and is in figure 2.5, must have a vertex
cover of size ≤ n+ 2m = 4 + 2 · 2 = 8.

In the figure, the eight nodes that are black, form the vertex cover of the
graph.

16 Chapter 2. Transformations of problems

2.6 Reduction of 3SAT to 3D-MATCHING

Theorem 2.6.1. 3-DIMENSIONAL MATCHING is NP-complete.

Proof. It is easy to prove 3DM ∈ NP , We will show 3SAT ≤p
m 3DM.

Given variables U = {u1, . . . , un} and clauses C = {c1, . . . , cm}. We
construct 3 disjoint sets W,X, Y with |W | = |X| = |Y | and the set M ⊆
W ×X × Y such that M has a matching iff formula Φ : c1 ∧ c2 ∧ . . . ∧ cm is
satisfiable.

We put in W : ui[j],¬ui[j], 1 ≤ j ≤ m, 1 ≤ i ≤ n (2mn of them).
We put in X:

• ai[j], 1 ≤ j ≤ m, 1 ≤ i ≤ n, (nm of them, used in truthsetting)

• S1[j], 1 ≤ j ≤ m, (m of them , used in satisfaction)

• g1[k], 1 ≤ k ≤ (n−1)m ((n−1)m of them , used in garbage collection).

Similarly to X, we construct set Y :

• bi[j], 1 ≤ j ≤ m, 1 ≤ i ≤ n.

• S2[j], 1 ≤ j ≤ m.

• g2[k], 1 ≤ k ≤ (n− 1)m.

We construt M ⊆ W × X × Y like this: For each variable ui we put in
M the sets of triples T t

i and T f
i where:

T t
i = {(¬ui[j], ai[j], bi[j]), 1 ≤ j ≤ m}

T f
i = {(ui[j], ai[j + 1], bi[j]), 1 ≤ j ≤ m} ∪ {(ui[m], ai[1], bi[m])}

There are 2nm triples and they are used in truthsetting. For each clause
cj we put in M the set of triples Cj where:

Cj = {(ui[j], s1[j], s2[j]) | ui ∈ cj clause} ∪

{(¬ui[j], s1[j], s2[j]) | ¬ui ∈ cj clause}, 1 ≤ j ≤ m

In total there are 3m triples and they are used in satisfaction.

Finally, for garbage collection, we put in M the set of triples G where:

G = {(ui[j], g1[k], g2[k]), (¬ui[j], g1[k], g2[k])},

1 ≤ k ≤ m(n− 1), 1 ≤ i ≤ n, 1 ≤ j ≤ m

2.6 Reduction of 3SAT to 3D-MATCHING 17

In total G has 2nm2(n− 1) elements.

Each matching M ′ ⊆ M must contain at least nm triples from T f
i , T

t
i

so that all ai[j] and bi[j] are included. For each ui, M
′ must contain either

the whole T f
i or the whole T t

i . Matching M ′ gives the following satisfying
assignment for Φ:

t(ui) =

{

True, T t
i ⊆ M ′

False, T f
i ⊆ M ′

⊓⊔

ui[1] ui[2]

¬ui[1]

¬ui[2]

ai[2]

ai[1]

T t
i ∪ T

f
i :

bi[1]

bi[2]

Figure 2.6: Reduction of 3SAT to 3DM: Truthsetting

Example 2.6.2. Given Φ : (u1 ∨ ¬u3 ∨ ¬u4) ∧ (¬u1 ∨ u2 ∨ ¬u4) which is
satisfiable by t(u1, u2, u3, u4) = (T, T, F, T). For each variable ui, M includes
the set shown in figure 2.6. In addition, M includes sets C1 and C2 shown
in figure 2.7.

s1[1]

s2[1]

u1[1]

¬u4[1]

C1

¬u3[1] u2[2]
s1[2]

s2[2]

¬u4[2]

C2

¬u1[2]

Figure 2.7: Reduction of 3SAT to 3DM: Satisfaction

18 Chapter 2. Transformations of problems

A matching M ′ ⊆ M that follows from assignment (T, T, F, T):

M ′ = {¬u1[1], a1[1], b1[1]),
(¬u1[2], a1[2], b1[2]),
(¬u2[1], a2[1], b2[1]),
(¬u2[2], a2[2], b2[2]),
(u3[1], a3[1], b3[1]),
(u3[2], a3[2], b3[2]),
(¬u4[1], a4[1], b4[1]),
(¬u4[2], a4[2], b4[2])}

⋃

T ′
⋃

G′

where
T ′ = {(u1[1], s1[1], s2[1]), (u2[2], s1[2], s2[2])}

and
G′ = {(u1[2], g1[1], g2[1]), (u2[1], g1[2], g2[2]),

(¬u3[1], g1[3], g2[3]), (¬u3[2], g1[4], g2[4]),
(u4[1], g1[5], g2[5]), (u4[2], g1[6], g2[6])}

Remark 2.6.3. 2-DIMENSIONAL MATCHING is in P . The 2DM problem
is also known as the (marriage problem). Other similar problems:

• 8 queens on a chessboard.

• 8 rooks on a chessboard.

• 8 rooks on a given allowed part of the chessboard.

2.7 Reduction of 3SAT to GRAPH

3-COLORABILITY

Theorem 2.7.1. GRAPH 3-COLORABILITY is NP-complete.

Proof. GRAPH 3-COLORABILITY is easily in NP .
We show 3SAT ≤p

m GRAPH3− COLORABILITY .
Given U = {u1, . . . , un} and clauses C = {c1, . . . , cm}.
We construct a graph G(V,E) such that formula Φ : (c1 ∧ c2 ∧ . . .∧ cm) is

satisfiable iff G is 3-colorable. We construct G as follows:

• For each variable ui ∈ U we put in V the vertices ui, ¬ui, and in E
the edges (ui,¬ui). We also put in V vertices a, b, and in E edges
(a, b), (ui, b), (¬ui, b). The graph up to this point is shown in figure 2.8
(truthsetting).

2.7 Reduction of 3SAT to GRAPH 3-COLORABILITY 19

a

b

¬u1 ¬u2 ¬u3

u3u2u1

Figure 2.8: Reduction of 3SAT to 3-Colorability: Truthsetting

cj [1]

cj [2] cj [3]

Oj

sj [2]sj [1]

Figure 2.9: Reduction of 3SAT to 3 Colorability: Satisfaction

• For each clause cj we augment graph G, with a subgraph shown in
figure 2.9. We also put in E edges (cj[k], ui) or (cj[k],¬ui) depending
on whether the k-th literal of cj is ui or ¬ui, respectively (satisfaction).

• Finally we add the remaining interconnections, i.e., we add edges (Oj, b)
and (Oj, a).

In total we have |V | = 2n+ 6m+ 2, |E| = 3n+ 12m+ 1.
Φ is satisfiable iff G(V,E) is 3-colorable.
If Φ is satisfiable, b gets color 2 and a gets color 1, so all Oj get color 0.

We also color ui, ¬ui as follows:

f(ui) =

{

1, t(ui) = True

0, t(ui) = False
and f(¬ui) =

{

0, t(ui) = True

1, t(ui) = False

All literals that are True in the satisfying assignment of Φ get color 1 and
all literals that are False get color 0. Now, we need to color the remaining
subgraphs, corresponding to clauses. Because Φ is satisfiable, there can be
no subgraph colored like the one in figure 2.10. All possible cases are those
shown in figure 2.11, (and symmetric to those).

Therefore, in all cases, G is 3-colorable.

20 Chapter 2. Transformations of problems

0

0 0

Figure 2.10: Subgraph of a non-satisfiable clause: not colorable

1

0

2

1

00

0

1

2

1

0

2

1

0

0

1

1

0

0

1

2

2

1

0

0 0

1

0

1 1 1

0

1

0

1

2

0

1 1 1

20

1

2

0

Figure 2.11: Possible colorings

Example: Given

Φ : (u1 ∨ u2 ∨ ¬u3) ∧ (¬u1 ∨ ¬u2 ∨ u3)

and t(u1, u2, u3) = (T, T, T), G(V,E) is shown in figure 2.12. The 3-coloring
is shown in figure 2.13.

If G is 3-colorable then the formula is satisfiable. If not, there is a clause
with all literals false, i.e., G has a subgraph like the one in figure 2.14, which
is not 3-colorable; a contradictoin. ⊓⊔

2.8 Reduction of VERTEX COVER to HAMIL-

TON CIRCUIT

Theorem 2.8.1. HAMILTON CIRCUIT (HC) is NP-complete.

Proof. HC can be easily shown to be in NP . We show that V C ≤p
m HC.

Given a graph G(V,E) and a positive integer k ≤ |V |, we construct
another graph G′(V ′, E ′) such that G(V,E) has a vertex cover of size k ≤ |V |
iff G′(V ′, E ′) has a hamilton circuit:

2.8 Reduction of VERTEX COVER to HAMILTON CIRCUIT 21

b

c2[1]

c2[2] c2[3]

O2

c1[3]

s1[2]

O1

c1[2]

s2[2]

a

s1[1] s2[1]

c1[1]

u1 u2

¬u2¬u1 ¬u3

u3

Figure 2.12: Corresponding graph

2

2

1 1 1

0
0

0

10 0

0

1

10 01

22

1

Figure 2.13: 3-coloring of the graph

22 Chapter 2. Transformations of problems

0

0 0

0

Figure 2.14: Subgraph that is not 3-colorable

• We put in V ′, k selector vertices a1, a2, . . ., ak.

• For each edge (u, v), we put in G′ a “bridge”, i.e., the component shown
in figure 2.15.

(u, e, 1)

(u, e, 2)

(u, e, 3)

(u, e, 4)

(u, e, 5)

(u, e, 6)

(v, e, 2)

(v, e, 1)

(v, e, 3)

(v, e, 4)

(v, e, 5)

(v, e, 6)

Figure 2.15: Bridge used in reduction of VC to HC

• ∀v ∈ V , we consider a permutation of edges that are incident to v:

〈

ev(1) , ev(2) , . . . , ev(d(v))
〉

where d(v) is the degree of v. In total, we have n vertices and hence n
such permutations.

For each vertex v, we connect all bridges that are in such a permutation,
by adding the following edges to E ′:

E ′
v = {((v, ev(i) , 6), (v, ev(i−1)

, 1))}, 1 ≤ i ≤ d(v), ∀v ∈ V

Example: Given graph in figure 2.16, we choose the following permutations:

• For vertex 1: < (1, 2), (1, 3), (1, 5) >

2.8 Reduction of VERTEX COVER to HAMILTON CIRCUIT 23

1 2

3 4

5

Figure 2.16: Example graph in reduction of VC to HC

• For vertex 2: < (2, 1), (2, 4) >

• For vertex 3: < (3, 1), (3, 5) >

• For vertex 4: < (4, 2), (4, 5) >

• For vertex 5: < (5, 1), (5, 4), (5, 3) >

The n paths (and bridges) created are shown in figure 2.17.
Finally, we connect the extremities of each path with all the selector

vertices a1, a2, . . ., ak, i.e., we add to E ′ the elements of set E ′′:

E ′′ = {((v, ev(1) , 1), ai), ((v, ev(d(v)) , 6), ai)}, 1 ≤ i ≤ k, ∀v ∈ V

We show that G(V,E) has a vertex cover of size ≤ k iff G′(V ′, E ′) has a
Hamilton cycle.

If G has vertex cover of size ≤ k, then we denote the vertex cover with
Vc. We will describe a hamilton circuit in G′.

Start at any ai, w.l.o.g. at a1 and then go to (v, ev(1) , 1) where v ∈ Vc.
To traverse the bridge starting at (v, ev(1) , 1), by passing exactly one time at
each of its points, choose one of the two ways shown in figure 2.18. If u /∈ Vc,
traverse the bridge like in (). If u ∈ Vc, traverse the bridge like in ().

Then go to the bridge starting at (v, ev(2) , 1) corresponding to edge (v, u′)
of G. Use the same idea to traverse it (depending on whether u′ ∈ Vc or
u′ /∈ Vc), etc. After traversing the last bridge of v go to another of the k
selectors, say a2.

From a2 go to the testing components of another vertex in Vc, etc., until
k such paths are traversed, finish at a1 where the path started. This is a
Hamilton cycle, because if there is a bridge that was not traversed, then the
corresponding edge in G is not covered; a contradiction.

Also, if the k selectors are not enough to go through the testing compo-
nents, then G has no vertex cover of size k; a contradiction.

If G′ has a Hamilton cycle, then we have to go through k paths, so each
bridge must be in some of these paths. So each edge of G (corresponding to

24 Chapter 2. Transformations of problems

2

2 4

4

5

5

5

1

1

1

3

3

Figure 2.17: Bridges for the example graph

2.9 Reduction of HAMILTON CIRCUIT to TSP 25

()()

Figure 2.18: The two ways to traverse a bridge

a bridge in G′) is covered by at least 1 vertex of G (corresponding to a path
of bridges). ⊓⊔

2.9 Reduction of HAMILTON CIRCUIT to

TRAVELING SALESPERSON PROBLEM

Theorem 2.9.1. TRAVELING SALESPERSON PROBLEM (TSP) is NP-
complete.

Proof. TSP belongs to NP. We show that TSP is NP-complete by reducing
HC to it (HC ≤p

m TSP).
Given is a graph G(V,E). We will construct a complete graph G′(V ′, E ′)

with weights d(u, v), ∀(u, v) ∈ E ′ and a positive integer B, such that G(V,E)
will have a Hamilton cycle iff G′(V ′, E ′) has a tour with total cost ≤ B.

• To graph G we add all missing edges (complete graph). We assign
weights to the edges G′:

d(u, v) =

{

1, (u, v) ∈ G

2, (u, v) /∈ G

• Finally, set B = |V ′| = |V |.

The above construction can be done in polynomial time.
If G has a Hamilton cycle then this forms a tour in G′ (goes once through

every node and has total weight B = |V ′| = |V | because every edge has
weight 1.

26 Chapter 2. Transformations of problems

Conversely, if G′ has a tour with total costs ≤ B = |V ′| = |V |, then
this tour goes through |V ′| edges and consequently total costs are exactly
B = |V ′|. Thus every one of the |V ′| edges has weight 1. Thus all edges
belong to G and G has a Hamilton cycle (the tour of G′). ⊓⊔

2.10 Reduction of VERTEX COVER to CLIQUE

Theorem 2.10.1. CLIQUE is NP-complete.

Proof. CLIQUE belongs to NP. We show that CLIQUE is NP-complete by
reducing VERTEX COVER (VC) to it (VC ≤p

m Clique).
Given is a graph G(V,E) and a positive integer k ≤ |V |. We construct a

graph G′(V ′, E ′) and a positive integer j ≤ |V ′| so that G has a vertex cover
of size ≤ k iff G′ has a clique ≥ j.

• Let G′ be the complementary graph of G. I.e., V ′ = V and E ′ =
{(u, v) | (u, v) /∈ E}. Also, set j = |V | − k = |V ′| − k.

This construction takes polynomial time.
If graph G has a vertex cover Vc ⊆ V with |Vc| ≤ k then nodes V −Vc are

non adjacent, and thus adjacent in G′. G′ has a clique of size |V | − |Vc| ≥
|V | − k = j.

Conversely, if G′ has a clique of size ≥ j = |V ′| − k then in G there are
at least |V ′| − k = |V | − k non-adjacent nodes. Thus the remaining (at most
k) nodes are covering all edges of G (vertex cover of size ≤ k). ⊓⊔

2.11 Reduction of CLIQUE to SUBGRAPH

ISOMORPHISM

Theorem 2.11.1. SUBGRAPH ISOMORPHISM is NP-complete.

Proof. SUBGRAPH ISOMORPHISM belongs to NP. We show that SUB-
GRAPH ISOMORPHISM is NP-complete by reducing CLIQUE to it (CLIQUE ≤p

m

SUBGRAPH ISOMORPHISM).
Given is a graph G and a positive integer k ≤ |V |. We construct two

graphs G1(V1, E1) and H(V2, E2) so that G(V,E) has a clique of size ≥ k
iff G1(V1, E1) has a subgraph isomorphic to H(V2, E2). Set G1 = G and
H = Kk.

If G has a clique with Vc = k, then G1 has a subgraph isomorphic to H.
Conversely, if G1 has a subgraph isomorphic to H, then G has a clique of
size at least k. ⊓⊔

2.12 Reduction of 3DM to PARTITION 27

2.12 Reduction of 3DM to PARTITION

Theorem 2.12.1. PARTITION is NP-complete.

Proof. PARTITION belongs to NP.We show that PARTITION is NP-complete
by reducing 3-DIMENSIONALMATCHING to it (3DM ≤p

m PARTITION).
Given are three disjoint sets W , X, Y with |W | = |X| = |Y | and a set

M ⊆ W × X × Y . We construct a set A and a weight function w(a) ∈
Z+, ∀a ∈ A, so that set M has a matching M ′ ⊆ M iff set A can be split
into two equal weight subsets.

• Given are

W = {w1, w2, . . . , wq}
X = {x1, x2, . . . , xq}
Y = {y1, y2, . . . , yq}
M = {m1,m2, . . . ,mk}, where mi = (wr, xl, yn)

A will have k+2 elements. The first k elements a1, a2, . . ., ak correspond
to mi’s. We will now define w(ai):

– Every w(ai) is represented by a binary sequence that consists of 3q
zones. Every zone has p = ⌈log2(k+1)⌉ binary digits (figure 2.19).
We label zones as follows:

w1, w2, . . . , wq x1, x2, . . . , xq y1, y2, . . . , yq

qp qp qp

p

w1

p p p

w2 wq

p p

x1 x2

p pp

y1 y2 yqxq

Figure 2.19: Binary sequence of the reduction of 3DM to PARTITION

If mi = (wr, xl, yn), then in the corresponding zones wr, xl, yn of
w(ai) the rightmost bit is a 1 and all others are 0. Thus, the
representation of w(ai) will contain exactly 3 1’s, all other bits
are 0. The decimal value of this binary number is:

w(ai) = 2p(3q−r) + 2p(2q−l) + 2p(q−n).

The construction can be done in polynomial time.

28 Chapter 2. Transformations of problems

– Here is the motivation for p equal to ⌈log2(k + 1)⌉: Even if all
elements mi have a common coordinate, adding all w(ai), will
never create a carry for the next higher zone:

p
0 0 · · · 0 1

... k
0 0 · · · 0 1

– Set:

B = 23qp−p + 23qpp−2p + . . .+ 20 =

3q−1
∑

j=0

2pj

I.e., the binary representation of B has a ‘1’ at the rightmost po-
sition of each zone. Observe that in a matching, every coordinate
is taken exactly once. Therefore:

∃A′ ⊆ A :
∑

ai∈A′ w(ai) = B ⇐⇒

∃M ′ ⊆ M : M ′ is a matching of M , where M ′ = {mi | ai ∈ A′} (∗)

• Finally, we define the weight of the last two elements of A. Element
b1 with weight w(b1) = 2

∑k
i=1 w(ai) − B and element b2 with weight

w(b2) =
∑k

i=1 w(ai) + B (polynomial construction also).

Now, we show that M has a matching iff A can be partitioned into two
equal weight sets, A1, A2.

If M has a matching M ′, then because of (∗), ∃A′ ⊆ A :
∑

ai∈A′ w(ai) =
B.

The total weight of A is:

Wtot =
k

∑

i=1

w(ai) + w(b1) + w(b2) = 4
k

∑

i=1

w(ai).

A1 will consist of all ai ∈ A′ and b1. The weight is:

2
k

∑

i=1

w(ai)−B + B = 2
k

∑

i=1

w(ai).

Consequently, A2 consisting of ai ∈ (A− A′) and b2 will have weight:

Wtot − 2
k

∑

i=1

w(ai) = 2
k

∑

i=1

w(ai).

2.13 Reduction of PARTITION to DISCRETE KNAPSACK 29

Conversely, let A be partitioned into two equal weight sets A1, A2, each
with weight 2

∑k
i=1 w(ai). b1, b2 cannot both be in the same set Aj. A′

contains those ai that belong to the set Ai which contains b1:

w(b1) +
∑

ai∈A′

w(ai) = 2
k

∑

i=1

w(ai) ⇒
∑

ai∈A′

w(ai) = B

Because of (∗), this means that: ∃M ′ ⊆ M : M ′ = {mi | ai ∈ A′} and M ′ is
a matching. ⊓⊔

2.13 Reduction of PARTITION to DISCRETE

KNAPSACK

Theorem 2.13.1. DISCRETE KNAPSACK is NP-complete.

Proof. DKNAPSACK belongs to NP. We show that DKNAPSACK is NP-
complete by reducing PARTITION to it (PARTITION ≤p

m DKNAPSACK).
Given a set A and a weight function w(ai), ∀ai ∈ A, we construct a set U ,

a weight function w′(ui), ∀ui ∈ U , and a cost function p(ui), ∀ui ∈ U and two
positive integers W , P so that A can be partitioned into two equal weight
sets iff there exists: U ′ ⊆ U :

∑

u∈U ′ w′(u) ≤ W,
∑

u∈U ′ p(u) ≥ P .

• Set U = A

• The weights w′(u), ∀u ∈ U are the same as w(a), ∀a ∈ A

• The costs p(u), ∀u ∈ U are also the same as w(a), ∀a ∈ A

• Set

W = P =
1

2

∑

a∈A

w(a) =
1

2

∑

u∈U

w′(u)

The construction can be done in polynomial time.
If A can be partitioned into two equal weight subsets, A′ and A − A′,

because the total weight of A is
∑

a∈A w(a), the weight of a A′ is 1
2

∑

a∈A w(a).
Thus for U ′ = A′:

∑

u∈U ′ w′(u) = W ≤ W and
∑

u∈U ′ p(u) = P ≥ P .
Conversely, ∃U ′ ⊆ U :

∑

u∈U ′ w′(u) ≤ W and
∑

u∈U ′ p(u) ≥ P . But
∑

u∈U ′ w′(u) =
∑

u∈U ′ p(u) = B = P = 1
2

∑

u∈U w′(u). Consequently, for
A′ = U ′, A is partitioned into two equal weight subsets, A′ and A− A′. ⊓⊔

.

Chapter 3

Complexity classes

3.1 Basic definitions

The computational model: Turing machine (deterministic or non deter-
ministic).

Definition 3.1.1. TIME(t(n)) (or DTIME(t(n))): problems that can be
solved by a deterministic TM in time t(n).

Definition 3.1.2. NTIME(t(n)): problems that can be solved by a non
deterministic TM in time t(n).

Definition 3.1.3. SPACE(s(n)) (or DSPACE(s(n))): problems that can be
solved by a deterministic TM by using additional working space s(n).

Definition 3.1.4. NSPACE(s(n)): problems that can be solved by a non
deterministic TM by using additional working space s(n).

Based on the above, we define:

• P = PTIME =
⋃

i≥1 DTIME(ni)

• NP = NPTIME =
⋃

i≥1 NTIME(ni)

• PSPACE =
⋃

i≥1 DSPACE(n
i)

• NPSPACE =
⋃

i≥1NSPACE(n
i)

• L = DSPACE(log n)

• NL = NSPACE(log n)

• DEXP =
⋃

i≥1 DTIME(2n
i

)

31

32 Chapter 3. Complexity classes

• DEXPSPACE =
⋃

i≥1 DSPACE(2
ni

)

• f is constructible: there is a TM which, ∀ input x with |x| = n, accepts
the input in time O(n + f(n)) (time-constructible) or working space
O(f(n)) (space-constructible).

Proposition 3.1.5. If f is constructible, then:

• DSPACE(f(n)) ⊆ NSPACE(f(n))

• DTIME(f(n)) ⊆ NTIME(f(n))

• DTIME(f(n)) ⊆ DSPACE(f(n))

• NTIME(f(n)) ⊆ DSPACE(f(n))

• If f(n) > log n then

– NTIME(f(n)) ⊆ DTIME(cf(n))

– DSPACE(f(n)) ⊆ DTIME(cf(n))

• NSPACE(f(n)) ⊆ DTIME(klogn+f(n))

Theorem 3.1.6 (Savitch’s Theorem, 1970). If f(n) ≥ log n then

NSPACE(f(n)) ⊆ DSPACE(f 2(n))

An immediate consequence: PSPACE = NPSPACE.

Thus:
L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE

We know that: L 6= PSPACE and NL 6= PSPACE.
Open problems:

L ⊇ NL ⊇ P ⊇ NP ⊇ PSPACE

See also figure 3.1.
Functional complexity classes:

Definition 3.1.7. FP = functions that can be computed by a deterministivc
TM in polynomial time

Definition 3.1.8. FL = functions that can be computed by a deterministivc
TM in logarithmic space

3.2 Hierarchy theorems 33

L

NL

P

NP

PSPACE = NPSPACE

Figure 3.1: Complexity classes

3.2 Hierarchy theorems

For a deterministic TM with at least three tapes:

Theorem 3.2.1 (Fürer, 1982). Given t2(n) > n, there is a language accepted
in time t2, but not in time t1 for any t1 = o(t2(n)).

Theorem 3.2.2 (Hartmanis, Lewis, Stearns, 1965). Given s2(n) > log n,
there is a language accepted in space s2, but not in space s1 for any s1 =
o(s2(n)).

We insist on constructible complexity functions, because otherwise we
have:

Theorem 3.2.3 (Gap theorem). There is a recursive function t(n), such
that TIME(t(n)) = TIME(2t(n)).

3.3 Complementary complexity classes

Complement of a language: L = {x | x 6∈ L}.

Complement class:

coC = {L | L ∈ C}.

For example, SAT ∈ coNP, and P is closed under complement.

Theorem 3.3.1 (Immerman-Szelepcsényi). NSPACE(s(n)) is closed under
complement.

34 Chapter 3. Complexity classes

3.4 Reductions

Definition 3.4.1 (Karp reduction).

A ≤P
m B : ∃f ∈ FP, ∀x(x ∈ A ⇐⇒ f(x) ∈ B)

Definition 3.4.2 (Log-space reduction).

A ≤L
m B : ∃f ∈ FL, ∀x(x ∈ A ⇐⇒ f(x) ∈ B)

We have A ≤L
m B =⇒ A ≤P

m B, but not the converse.

Definition 3.4.3. Class C is closed under reduction ≤ if

A ≤ B ∧ B ∈ C =⇒ A ∈ C.

Definition 3.4.4 (Hardness). A is C-hard, under ≤, if:

∀B ∈ C : B ≤ A.

Definition 3.4.5 (Completeness). A is C-complete, under ≤, if:

A is C − hard under ≤ ∧ A ∈ C.

Complete problems for several complexity classes:
For NL, we have Reachability (under log-space reductions). For P, we

have: Circuit-Value and Linear Programming (again under log-space
reductions). For NP, we have 3SAT. For PSPACE, we haveQBF (Quantified
Boolean Formula satisfiability problem). For EXP, we have n × n Go. For
EXPSPACE, we have RegExp(∪, ·, ∗, 2), i.e., checking equivalence of regular
expressions, containing the following operators: ∪ (union), · (concatenation),
∗ (Kleene star) and 2, where α2 = α · α.

3.5 Parameters for defining complexity classes

• model of computation: Turing machine (TM), Random Access Ma-
chine (RAM), finite automaton, Linearly Bounded Automaton (LBA),
parallel RAM (PRAM), monotone circuits;

• operation mode: deterministic, non deterministic, probabilistic, alter-
nating, parallel;

• computation kind: decider, acceptor, generator, transducer;

3.6 Computational tree model for TMs 35

• resources: number of computation steps, number of comparisons, num-
ber of multiplications, time, memory space, number of processors, num-
ber of alternations in computation tree, size of circuit, depth of circuit;

• other tools: randomness, oracles, interactivity, promise, operators;

• bounds with respect to the size of input: e.g., O(n3) or polynomial,
time/space (t(n), s(n)) tradeoff, Probabilistic Checkable Proofs: PCP(r(n), q(n))
(using r(n) random bits and q(n) queries to the proof).

3.6 Computational tree model for TMs

...

...
yes no yes yes

Figure 3.2: Computational tree model

We use quantifiers (∃, ∀) over computation paths (from the root to a leaf)
in computation trees. E.g., we write ∃y, instead ∃y : |y| ≤ p(|x|), where y:
variable for paths, x: variable for inputs, p: polynomial.

In all cases, below, we use a predicate R computed in polynomial time.

L ∈ P ⇐⇒ ∃R ∈ P:

{

x ∈ L =⇒ ∀yR(x, y)

x 6∈ L =⇒ ∀y¬R(x, y)

L ∈ NP ⇐⇒ ∃R ∈ P:

{

x ∈ L =⇒ ∃yR(x, y)

x 6∈ L =⇒ ∀y¬R(x, y)

L ∈ coNP ⇐⇒ ∃R ∈ P:

{

x ∈ L =⇒ ∀yR(x, y)

x 6∈ L =⇒ ∃y¬R(x, y)

The two quantifiers used in “x ∈ L” and “x 6∈ L” define fully the com-
plexity class, so we use the following notation:

P = (∀, ∀), NP = (∃, ∀), coNP = (∀, ∃).

.

Chapter 4

Randomness, Oracles,
Parallelism

4.1 Randomness

In the computation tree model, we assume that non-deterministic choices
at each node are done with probability 1/2. To express that an ‘overwhelm-
ing’ majority of computation paths has some property, we use a new quan-
tifier: ∃+.

Thus, we define BPP (Bounded error Probabilistic Polynomial):

Definition 4.1.1 (BPP = (∃+, ∃+)).

L ∈ BPP ⇐⇒ ∃R ∈ P:

{

x ∈ L =⇒ ∃+yR(x, y)

x 6∈ L =⇒ ∃+y¬R(x, y)

The exact definition of overwhelming majority is not important as long
as it is bounded over 1/2. It can be bigger than any of the following: 1/2+ε,
1/2 + 1/p(|x|), 2/3, 99%, 1− 2−p(|x|) (where p(|x|) > 1).

BPP algorithms are also known as Monte Carlo or two-sided error. BPP
is closed under complement.

For one-sided error, we have:

Definition 4.1.2 (RP = (∃+, ∀)).

L ∈ RP ⇐⇒ ∃R ∈ P:

{

x ∈ L =⇒ ∃+yR(x, y)

x 6∈ L =⇒ ∀y¬R(x, y)

37

38 Chapter 4. Randomness, Oracles, Parallelism

We can define the complement of RP in a similar way: coRP = (∀, ∃+):

L ∈ coRP ⇐⇒ ∃R ∈ P:

{

x ∈ L =⇒ ∀yR(x, y)

x 6∈ L =⇒ ∃+y¬R(x, y)

We have RP ⊆ BPP, coRP ⊆ BPP, but RP = coRP is open.

ZPP = RP∩ coRP (Zero error Probabilistic Polynomial) Alternatively, a
ZPP algorithm can give three answers in each run: ‘yes’, ‘no’, and ‘I do not
know’.

ZPP algorithms are also known as Las Vegas.

We do not know if there exist complete problems for the classes BPP,
RP, ZPP).

If we don’t bound the error away from 1/2, we use the quantifier ∃1/2.

For unbounded two-sided error, we have class PP (Probabilistic Polyno-
mial):

Definition 4.1.3 (PP = (∃1/2, ∃1/2)).

L ∈ PP ⇐⇒ ∃R ∈ P:

{

x ∈ L =⇒ ∃1/2yR(x, y)

x 6∈ L =⇒ ∃1/2y¬R(x, y)

Proposition 4.1.4. NP ⊆ PP.

RL (Randomized Logspace) contains problems that have one-sided error
algorithm that uses logarithmic space and polynomial number of bits w.r.t
input size.

4.2 Polynomial Hierarchy

Computation with an oracle: An algorithm uses an oracle for problem
Π, if the algorithm can pose (during the computation) a query to the oracle
for some instance x of problem Π, whether x ∈ Π, and the oracle answers
‘yes’ or ‘no’. The algorithm does not spend any additional resources when it
asks a question to the oracle (it gets the correct answer for ‘free’ even though
problem Π can be very hard).

4.2 Polynomial Hierarchy 39

Definition 4.2.1 (Oracle classes).

• CΠ : class of problems solvable by an algorithm in class C that uses an
oracle for problem Π

• CCo =
⋃

Π∈Co

CΠ

E.g.: PSAT: Problems solvable by a deterministic polynomial algorithm
using an oracle for the SAT problem. Another equivalent description: PNP

(because SAT is NP-complete).

Classes in the polynomial hierarchy:

Definition 4.2.2. (k ≥ 0)

• Σp
0 = Πp

0 = ∆p
0 = P

• Σp
k+1 = NPΣp

k , Πp
k+1 = coΣp

k+1, ∆
p
k+1 = PΣp

k , ∆Σp
k = Σp

k ∩Πp
k

• Polynomial hierarchy: PH =
⋃

k∈IN Σp
k

Σp
1 = NP, Πp

1 = coNP and ∀k ≥ 0: Σp
k ⊆ Σp

k+1 and Πp
k ⊆ Σp

k+1.
Although there is no proof of the strictness of the above inclusions (like
in the arithmetic hierarchy), it is believed that the polynomial hierarchy is
strict. If PH is not strict, then ∃k: PH = Σp

k , i.e., PH collapses at the k-th
level.

A different way to define PH: using quantifier alternation (∃ and ∀). In all
cases, quantifiers quantify over strings whose size is bounded by a polynomial
p w.r.t. input size.

Proposition 4.2.3. L ∈ Σp
k iff ∃ predicate R computable in polynomial time

and a polynomial p that bounds the quantified variables, such that:

x ∈ L ⇐⇒ ∃y1∀y2 . . . Qyk R(x, y1, y2, . . . , yk),

where Q =

{

∃, k: odd

∀, k: even
.

Similarily for Πp
k , but the quantifiers start from ∀:

Proposition 4.2.4. L ∈ Πp
k iff ∃ predicate R computable in polynomial time

and a polynomial p that bounds the quantified variables, such that:

x ∈ L ⇐⇒ ∀y1∃y2 . . . Qyk R(x, y1, y2, . . . , yk),

where Q =

{

∀, k: odd

∃, k: even
.

40 Chapter 4. Randomness, Oracles, Parallelism

PH

∆p
1 = P

∆Σp
1

Πp
1 = coNP Σp

1 = NP

∆p
2 = PNP

Πp
2 Σp

2

∆p
3

∆Σp
3

Πp
3 Σp

3

...

PSPACE

∆Σp
2 = Σp

2 ∩ Πp
2

Figure 4.1: Polynomial hierarchy PH

4.3 Parallelizable problems – Circuits 41

4.2.1 Alternating TMs

Consider the tree representation of the computation of an NPTM: the
answer is ‘yes’ if there is at least one leaf saying ‘yes’. Every node in the tree
has answer value namely the disjunction (∨) of the answers of its children.

A coNPTM accepts if all leaves say ‘yes’, so every node has an answer
value of the the conjuction (∧) of its children.

All nodes in an NPTM tree are of type ∨, or ∃, or existenstial. All nodes
in a coNPTM tree are of type ∧, or ∀, or universal.

In an alternating TM the corresponding computation tree can have inter-
nal nodes of types ∨ and ∧. The number of type alternations is important.
The maximum number of alternations allowed along a path of the computa-
tion tree (this number is usually bounded) is an indication of the capabilities
of the respective TM.

For example, the tree of figure 4.2 has two alternations.

∧

yes yes yes yes

∧∧

∧

∨

∨

∨

no no no no

Figure 4.2: Computation tree with alternations

It can be shown that the polynomial hierarchy is exactly the class of
languages accepted by TMs with bounded number of alternations.

• L ∈ Σp
k iff L is acceptable by a TM with at most k alternations, starting

with type ∨ (at the root);

• L ∈ Πp
k iff L is acceptable by a TM with at most k alternations, starting

with type ∧ (at the root).

4.3 Parallelizable problems – Circuits

A circuit is a directed acyclic graph1, with a set of input nodes and one
output node. Inputs to the circuit are truth values (0 or 1) and each internal
node corresponds to some boolean function (gate) with possibly many inputs.

1Acyclicity means no circuits with feedback are considered.

42 Chapter 4. Randomness, Oracles, Parallelism

If a circuit C has n 1-bit inputs: x1, x2, . . . , xn, then ∀x ∈ {0, 1}n, C
computes a unique value at the output, namely C(x). If C(x) = 1, C accepts
the n-bit input x.

A circuit (because of its fixed nature) can only answer for inputs of size
exactly n, but a TM (or an algorithm in general) can process inputs of any
size. For this reason, we consider a family of circuits {C1, C2, . . . }, where
each Cn has n input nodes.

Language accepted by a circuit family:

L(C) = {x | C|x|(x) = 1}.

Remark: Circuit families, in contrast to TMs, are not countable! To overcome
this problem, we consider only uniform circuit families. For a uniform circuit
family there is an efficient algorithm that constructs a representation of Cn,
for every n. E.g.: for P-uniform families there exist polynomial construction
algorithms. However for classes of lower complexity than P a more restricted
kind of uniformity is used:

Definition 4.3.1. A family of circuits is DLOGTIME-uniform if ∃ TM (with
random access capability to its input tape) that answers the following ques-
tions in O(log n) time:

• is there an edge from node u to node v in Cn?

• What kind of gate node u is?

Size of a circuit is the number of nodes in the corresponding graph (an
indication of the cost of such a circuit: number of gates). However, size is
not a good indication of the time it takes for a circuit to compute, because
many gates function in parallel. When time is considered, the depth of the
circuit is more important (depth defined as the length of the longest path
from an input to the output node).

The kind of gates allowed is also important.

1. Gates with bounded in-degree (bounded fan-in) (including unary ¬
gates). It suffices to consider only binary ∧ and ∨ gates (along with
unary ¬ gates).

2. ∧ and ∨ gates with unbounded in-degree (unbounded fan-in) (including
unary ¬ gates).

3. Threshold gates2 with unbounded in-degree, and unary ¬ gates. It
suffices to use majority gates, which output 1 iff at least r/2 of the r
inputs are 1, and unary ¬ gates.

2Threshold gates are used in neural networks.

4.3 Parallelizable problems – Circuits 43

Circuit classes:

Definition 4.3.2. (k ≥ 0):

1. NCk: class of languages acceptable by DLOGTIME-uniform circuit
families of polynomial size and O(logk n) depth, with gates of the first
kind (bounded fan-in).

2. ACk: class of languages acceptable by DLOGTIME-uniform circuit
families of polynomial size and O(logk n) depth, with gates of the sec-
ond kind (unbounded fan-in).

3. TCk: class of languages acceptable by DLOGTIME-uniform circuit
families of polynomial size and O(logk n) depth, with gates of the third
kind (threshold gates).

4. SCk: class of languages acceptable by a DTM in polynomial time and
in O(logk n) space.

NC =
⋃

k∈IN NCk. This is Nick’s Class, in honor of Nicholas Pippenger,
who was one of the first to investigate circuit complexity.

Many other models of parallel computation (e.g., CRAM), apart from
circuits, can be used to define NC, which is an indication of the robustness
of the class and its close relation to parallelizable problems.

The ‘A’ in ACk stands for ‘alternation’, because ACk, for k ≥ 1, contains
exactly the languages acceptable by a TM in O(log n) space with at most
O(logk n) alternations. The ‘T’ in TCk stands for ‘threshold’. SC or “Steve’s
Class”, in honor of Steve Cook.

Relations between parallel complexity classes:

Theorem 4.3.3. ∀ k ≥ 0, NCk ⊆ ACk ⊆ TCk ⊆ NCk+1.

Relations to other classes:

Theorem 4.3.4. Regular ⊆ NC1 ⊆ L = SC1 ⊆ NL ⊆ AC1.
Regular ⊂ CF ⊂ AC1.

I.e., checking if a string is produced by a given context free language is
in NC2.

.

Chapter 5

Interactivity, PCP

5.1 Interactivity

In this section we define complexity classes with the help of two TMs that
interact by exchanging messages. Usually, one of them, the Prover, tries to
convince the other one, the Verifier, that a string belongs to some language.
A tool that is used is randomness.

5.1.1 Interactive proof systems (IP)

Consider a prover, trying to convince a verifier about the truth of a state-
ment of the form ‘x ∈ L’. The prover is omnipotent, i.e., an algorithm that
has no bounds on the resources it can use (time, space). On the contrary, the
verifier is just a polynomial time probabilistic algorithm. The prover and the
verifier take part in a communication protocol (they send messages to each
other). Depending on the messages V receives from P , V accepts P ’s proof,
otherwise V rejects. The prover may be dishonest, and attempt to convince
V that ‘x ∈ L’, even for x such that ‘x 6∈ L’. The verifier (against the om-
nipotent prover) can use polynomial time, but principally randomness. The
class IP was defined by Goldwasser, Micali, Rackoff.

Definition 5.1.1. L ∈ IP:

• x ∈ L =⇒ ∃ prover P , such that verifier V always accepts (i.e., with
probability 1)

• x 6∈ L =⇒ ∀ prover P , verifier V does not accept, with overwhelming
probability.

45

46 Chapter 5. Interactivity, PCP

Consider the graph non isomorphism problem: “Given two graphs, are
they non isomorphic?”. This problem is in coNP.1 We give a protocol for
the graph non isomorphism problem, showing it is in IP.

Initially, the verifier has the two graphs G1 and G2. V chooses randomly
one of the two, say Gi, and computes a random isomorphic graph to Gi, say
H (this can be done by choosing a random permutation of the n vertices
of graph Gi). V sends H to the prover, and asks for a j such that Gj is
isomorphic to H. P responds with a j ∈ {1, 2}. V accepts if i = j, otherwise
V rejects.

If G1, G2 are really non isomorphic, then P , being omnipotent, finds the
(unique) graph Gi which is isomorphic to the H that V sent, and gives the
correct answer to V , thus V accepts. If however G1, G2 are isomorphic, P
cannot infer from which Gi H stems from, so P can do nothing better than
choose randomly from {1, 2}. Thus, if the graphs are isomorphic V rejects
with probability 1/2.

Any L ∈ PH has an IP protocol. In fact, an even stronger result holds:

Theorem 5.1.2 (Shamir). IP = PSPACE

What if the verifier can interact with more than one provers? If the
provers can communicate with each other, then we still get class IP (a prover,
being an omnipotent algorithm, can simulate many other provers). However,
if provers cannot communicate between themselves, then we have the more
powerful class MIP (Multi IP). In fact: MIP = NEXP.

5.1.2 Arthur-Merlin classes

In class IP the verifier ‘hides’ the random bits used. In fact, this is a
necessary ingredient of the proof that graph non isomorphism is in IP. It
seems that if the verifier is forced to reveal the random bits used, we would
get a less powerful class than IP. In this class, the prover is called Merlin and
the verifier is called Arthur (description due to Babai). In fact, we can even
require that Arthur’s messages are less restricted: he just sends his random
bits to Merlin. Depending on Merlin’s answers, Arthur decides whether he
accepts or rejects.

We say that Arthur and Merlin play a k move game (every move corre-
sponds to a message): if Arthur moves first the game is denoted by AM(k),
and if Merlin moves first it is denoted by MA(k). E.g., AM(1) = A, AM(2) =
AM, AM(3) = AMA, MA(1) = M, MA(2) = MA, MA(3) = MAM.

1The complementary problem, graph isomorphism, is in NP, but it does not seem to
be NP-complete.

5.2 Probabilistically Checkable Proofs — PCP 47

Definition 5.1.3. L ∈ AM(k) iff ∃ a k move game where Arthur plays first
and:

• x ∈ L =⇒ Arthur is convinced with probability greater than 2/3 that
x ∈ L

• x 6∈ L =⇒ Arthur is convinced with probability less than 1/3 that
x ∈ L.

Using generalized quantifiers, these classes can be defined as (Zachos):

AM = AM(2) = (∃+∃, ∃+∀), MA = MA(2) = (∃∃+, ∀∃+),

and for even k, if AM(k) = (Q1,Q2), where Q1, Q2 sequences of quantifiers:

AM(k + 1) = (Q1∃
+,Q2∃

+), AM(k + 2) = (Q1∃
+∃,Q2∃

+∀).

This description can be simplified (Zachos):

AM = AM(2) = (∀∃, ∃+∀), MA = MA(2) = (∃∀, ∀∃+),

and for even k, if AM(k) = (Q1,Q2), where Q1, Q2 sequences of quantifiers:

AM(k + 1) = (Q1∀,Q2∃
+), AM(k + 2) = (Q1∀∃,Q2∃

+∀).

Using properties of quantifiers:

Proposition 5.1.4. MA ⊆ AM .

Proposition 5.1.5. The Arthur-Merlin hierarchy collapses, i.e.:

AM = AM(k) = MA(k + 1), ∀ k ≥ 2.

Although, the Arthur-Merlin class with polynomial number of messages
seems weaker (because of the public random bits) than IP, in fact, Goldwasser
and Sipser proved that they are equivalent.

5.2 Probabilistically Checkable Proofs — PCP

If we replace (in interactive proof systems) the prover by a simple proof,
we get class PCP. Equivalently, in PCP, the prover sends only one commu-
nication message; he sends the whole proof to V . Such a proof is checked
probabilistically by V .

48 Chapter 5. Interactivity, PCP

Definition 5.2.1. L ∈ PCP:

• x ∈ L =⇒ ∃ proof Π such that the verifier V always accepts (i.e.,
with probability 1)

• x 6∈ L =⇒ ∀ ‘proofs’ Π, the verifier V does not accept, with over-
whelming probability.

This class seems a lot more powerful than IP because in PCP the verifier
does not have to ‘confront’ an adaptable prover, but a static proof. And in
fact: PCP = MIP(= NEXP). That is why we consider restrictions of PCP.
We consider two kinds of resources for which the verifier has some restrictions
in their use:

• randomness (in the form of random bits);

• bits of the proof that the verifier checks (queries to the proof).

Definition 5.2.2. PCP(r(n), q(n)) consists of languages L ∈ PCP such that
the polynomial time verifier V uses O(r(n)) random bits and queries O(q(n))
bits of the proof.

Relation to other classes: PCP = PCP(poly(n), poly(n)), P = PCP(0, 0),
NP = PCP(0, poly(n)), coRP = PCP(poly(n), 0).

A very important result (Arora, Lund, Motwani, Sudan, Szegedy):

Theorem 5.2.3 (PCP). NP = PCP(log n, 1).

An application of the PCP theorem is in proofs of non-approximability
(see section 6.2).

The basic tool in the proof of the PCP theorem is a method (PCP en-
coding) that smears a possible mistake in a proof in all parts of the proof,
so that the verifier has an overwhelming probability to find the error. This
method is based on techniques of error correcting codes.

Chapter 6

Counting, Approximation

6.1 Counting classes

Counting classes are defined based on the number of solutions of a prob-
lem. They are function classes (like FP).

Definition 6.1.1. #P: the class of functions f for which there is a poly-
nomial time NDTM, whose computation tree has exactly f(x) accepting
computation paths (for input x).

Definition 6.1.2. #L: the class of functions f for which there is a loga-
rithmic space NDTM, whose computation tree has exactly f(x) accepting
computation paths (for input x).

Reductions that preserve the number of solutions are useful for counting
classes.

A complete problem for #P is #SAT: “Given a CNF formula, how many
different satisfying truth assignments are there?”. Obviously φ ∈ SAT iff
#SAT(φ) 6= 0.

Some results:

FP ⊆ #P ⊆ FPSPACE, PPP = P#P, FL ⊆ #L ⊆ FNC2.

Theorem 6.1.3 (Toda). PH ⊆ P#P.

6.2 Approximation algorithms

In this section we consider optimization problems. These are search prob-
lems of a feasible solution that maximizes or minimizes an objective function.

An optimization problem is: (I, S, v, goal).

49

50 Chapter 6. Counting, Approximation

• I: problem instances;

• S: a function that maps instances to feasible solutions;

• v: the objective function maps feasible solutions to positive integers

• goal: min or max, for minimization or maximization of the objective
function, respectively.

The value of the objective function at the optimal solution for input x is
denoted by OPT(x) and is equal to goal{v(y) | y ∈ S(x)}.

For each optimization problem, we define the underlying decision prob-
lem:

Given, in addition to x, a bound k.
Question: is OPT(x) ≥ k?
(for a maximization problem – similarily for a minimization problem)

E.g., in MAX-CLIQUE the instance is a graph x, the feasible solutions are
all complete subgraphs of x (cliques), the objective function is the number
of nodes in the clique and goal = max. The underlying decision problem is
CLIQUE.

Optimization problem classes:

Definition 6.2.1. NPO: the class of optimization problems for which the
underlying decision problem is in NP (with the condition that there are
feasible solutions for every instance).

Definition 6.2.2. PO: the class of optimization problems for which the
underlying decision problems is in P.

Many optimization problems are NP-hard, so approximation algorithms
are useful in this case.

Definition 6.2.3. A polynomial time algorithm M is ρ-approximation for
a maximization problem if for every x ∈ I it gives a solution M(x) ∈ S(x)
such that:

v(M(x))

OPT(x)
≤ ρ.

Similarily, for a ρ-approximation algorithm for a minimization problem.

Some important NPO subclasses:

• poly-APX: problems for which there exists a p(n)-approximation algo-
rithm for some polynomial p (where n is the input size: n = |x|).

6.2 Approximation algorithms 51

• log-APX: problems for which there exists a log n-approximation algo-
rithm (where n is the input size: n = |x|).

• APX: problems for which there exists a ρ-approximation algorithm for
some constant ρ > 0.

• PTAS: problems for which there exists a polynomial time approximation
scheme, i.e., a (1+ε)-approximation algorithm for any constant ε > 0.

• FPTAS: problems for which there exists a fully polynomial time approx-
imation scheme, i.e., a (1+ε)-approximation algorithm for any constant
ε > 0, where, additionally, the time needed is also polynomial w.r.t.
1/ε.

The inclusion between the above classes is shown in figure 6.1.

52 Chapter 6. Counting, Approximation

NPO - TSP

poly-APX - Clique

log-APX - Set-Cover

APX - Vertex Cover

PTAS - Bin-Packing

FPTAS - 0-1 Knapsack

PO - LP

Figure 6.1: Optimization classes

