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Motivation via Cryptography
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“I can’t find an efficient algorithm, 1 guess I’'m just too dumb.”

pictures from “Computers and Intractability” by Garey and Johnson 1979.



NP-hardness

““I can’t find an efficient algorithm, because no such algorithm is possible!”

pictures from “Computers and Intractability” by Garey and Johnson 1979.
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I can’t find an efficient algorithm, but neither can all these famous people.”

pictures from “Computers and Intractability” by Garey and Johnson 1979.
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“If I could find an algorithm I could solve all these famous difficult problems”
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“If someone could break the protocol, they could solve FACTORING on average.”
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“If someone could break the protocol, they could solve L\WE on average.”
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“If someone could break the protocol, they could solve on worst-case all these famous difficult problems”
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Can we achieve Cryptographic Utopia?

Bottlenecks
o cryptography is based on problems that are hard on average!

o NP-hard problems do not suffice for cryptography.



Average-Case Hardness

Hard Instances

...but does not help for cryptographic utopia.
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Worst-to-Average Case Reduction




Worst-to-Average Case Reduction

worst-case problem —
e.g. 3-SAT
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Bottlenecks
o cryptography is based on problems that are hard on average!

o NP-hard problems do not suffice for cryptography.



The Inadequacy of NP-hardness

Collision Resistant Hash Functions
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The Inadequacy of NP-hardness

Collision Resistant Hash Functions

Hard to find x, x’, with x # x’ and

C C(x) =C(x)

1R
-ninputs
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To achieve cryptographic utopia for Collision Resistant Hash Functions
we have to prove hardness for search problems that are total!
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The Inadequacy of NP-hardness

To achieve cryptographic utopia for Collision Resistant Hash Functions
we have to prove hardness for search problems that are total!

the answer to the

decision version of the problem is always
atfirmative, i.e. solution is guaranteed to exist.

e.g. Any compressing function always has a collision!



The Inadequacy of NP-hardness

To achieve cryptographic utopia for Collision Resistant Hash Functions
we have to prove hardness for search problems that are total!

Theorem [Johnson Papadimitriou Yannakakis ‘88, Meggido Papadimitirou ‘91]
If a total search problem is NP-hard then NP = co-NP.
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The Inadequacy of NP-hardness

Theorem [Johnson Papadimitriou Yannakakis ‘88, Meggido Papadimitirou ‘91]
If a total search problem is NP-hard then NP = co-NP.

What about randomized reductions?
If a total seach problem is NP-hard under randomized reductions then
- we know: SAT is checkable.

- we want: AM = co-AM, 1mp11es PH Collapses [Hastad, Boppana, Zachos “871].
PH collapses directly.






The Inadequacy of NP-hardness

To achieve cryptographic utopia for Collision Resistant Hash Functions
we have to prove hardness for search problems that are total!

Theorem [Johnson Papadimitriou Yannakakis ‘88, Meggido Papadimitirou ‘91]
If a total search problem is NP-hard then NP = co-NP.



Complexity of Total Search Problems

FNP

TFTNP
FNP: class of search problems 1
whose decision version is in NP. PTENP
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TFNP: class of total search PLS opins
problems of FNP, i.e. a solution
always exists [MP91] PPAD/ PWPP
Subclasses of TFNP introduced CLS/'
by [JPY88, Pap94, CD11, Jerabek16] \
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Complexity of Total Search Problems

FNP

T
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the problem does not contain t

a circuit or a Turing machine as part PTFENP
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Complexity of Total Search Problems
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Prior to our work natural complete t
problems for all subclasses except: PTFNP\
PPP, PWPP, CLS, PPADS. / Pll PP
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Our Result /'
We identity the first natural PPP-complete ppap  (PWPP
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an open problem since [Pap94]. CLS
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Polynomial Pigeonhole Principle

“Total search problems should be classified in terms of the profound mathematical
principles that are invoked to establish their totality.”

Papadimitriou ‘94

PPP, PWPP > Pigeonhole principle
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Polynomial Pigeonhole Principle

PPP:
Given a circuit C : {0,1}"* — {0,1}". Find:

1. Anxs.t. C(x) =0 or

2. a collision, i.e x # y s.t. C(x) = C(y).

Obviously a total problem, cannot be NP-hard!



Polynomial Pigeonhole Principle

PWPP:
Given a circuit C : {0,1}" — {0,1}", with m < n.

Find a collision, i.e x # y s.t. C(x) = C(y).




PPP/PWPP and Cryptography

PPP

AN

One Way Permutation — OWP PWPP

|

Collision Resistance Hash Function — CRHF



PPP/PWPP-completeness

A longstanding open problem since [Papadimitriou ‘94].

Our contribution:

We identity the first natural PPP/PWPP-complete problems.

This talk: PWPP.

Main Theorem:

WEAK-CSIS is PWPP-complete.
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Short Integer Solution (SIS) Problem

XYye¢ {0,1}™

domain size is 2™



Short Integer Solution (SIS) Problem

rxm

image size is g’
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Short Integer Solution (SIS) Problem

The problem is in PWPP!

INPUT: - - ngm, wit
Ourrut: X ¥ € {0,1}™ s.t.- X = - y (mod g)



Short Integer Solution (SIS) Problem

INPUT: - € Zy*", with m > log(q)r.
Ourrur: X §¥ € {0,1}" s.t. - X = - y (mod g)
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INPUT: -
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c ngm’
with m > log(q)(r + d)




Constraint Short Integer Solution Problem
dxm
INPUT: €Zy", |
and binary invertible

Output: X Y € {0,1}" s.t.




Constraint Short Integer Solution Problem
I . S ngml
S and binary invertible

Output: X Y € {0,1}" s.t.

-X = () (mod g)




Constraint Short Integer Solution Problem
I . S ngml
S and binary invertible

Output: X Y € {0,1}" s.t.

-YZO(modq)



Constraint Short Integer Solution Problem

I c ngm’
MR with m > log(q)(r + d)

Ourrut: X ¥ € {0,1}™ s.t.- X :- y (mod g)

E Zd Xm
q 4
and binary invertible




Constraint Short Integer Solution Problem

I c ngm’
MR with m > log(q)(r + d)

Ourrut: X ¥ € {0,1}™ s.t.- X :- y (mod g)

E Zd Xm
q 4
and binary invertible

Why is this
problem total?




Constraint Short Integer Solution Problem

. € Zy ", e zixm
NP with m > log(q)(r 4+ d) and_binary invertible
Ourrut: X ¥ € {0,1}™ s.t.- X = - y (mod g)

Why is this
problem total?
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Binary Invertible Matrix

8 = 124 .. 28 2>y




Binary Invertible Matrix

e.g. form =10, q=

8

1 2 4 3 0 6 5 6
G=(0 0 01 2 4 1 O

0O 0 0 0 0 0 1 2




Binary Invertible Matrix

e.g. form =10, q=

8

1 2 4
G=(0 0 O

0 0 O




Binary Invertible Matrix

g
G - N
0 g
<€
m — dlog(q)
§ — 124 .28 @ 2kxg

Lemma
For any z € {0,1}"7198(9)4 and any b € Z¢, we can

efficiently compute a binary solution of the form
X = [* x---% z| for the equation Gx =b (mod gq).
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Binary Invertible Matrix

Example

(mod 8)

"521“
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1 2 4 3 0 6 5 6 2 1
0O 0 01 2410 3 5
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Binary Invertible Matrix

Example

(mod 8)
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Binary Invertible Matrix

Example

(mod 8)
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Binary Invertible Matrix

Example

(mod 8)
0 0000012 4 0] 1]




Binary Invertible Matrix

Example

(mod 8)
0 0000012 4 0] 1]

l-x7+2-xg+4-x9=1 (m0d8)
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Example

(mod 8)
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Binary Invertible Matrix

Example

(mod 8)

"521“
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1 2 4 3 0 6 5 6 2 1
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Binary Invertible Matrix

Example

00012410 3 5] 2] (mod 8)
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Example

00012410 3 5] 2] (mod 8)
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Binary Invertible Matrix

Example

0001 2410 3 5] 2] (mod 8)
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Example
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Binary Invertible Matrix

Example

(mod 8)

"521“

_***1001001_

1 2 4 3 0 6 5 6 2 1
0O 0 01 2410 3 5
O 0 0 0 0 0 1 2 4 0




Binary Invertible Matrix
Example
12430656 2 1]

_O O =k O O = X X X

El

(mod 8)



Binary Invertible Matrix

Example

M1 2 4 306 5 6 2 17 ¥ 5]

(mod 8)
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Binary Invertible Matrix

Example

M1 2 4 306 5 6 2 1]

_0 O = O O = = O O

El

(mod 8)



Binary Invertible Matrix

Example

(mod 8)

"521“

_0011001001_

1 2 4 3 0 6 5 6 2 1
0O 0 01 2410 3 5
O 0 0 0 0 0 1 2 4 0
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WEAK-CSIS is Total

<€ >

m —dlog(q)

— I (mod q)

# of solutions is 2™ 41084
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I c ngm’
MR with m > log(q)(r 4+ d)

Ourrut: X ¥ € {0,1}™ s.t.- X :- y (mod g)
2G| x— {6y —0imas

E Zd Xm
q 4
and binary invertible
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INPUT: cZ
' witl{(m — dlog(q) > rlog(q)
Ourrut: X ¥ € {0,1}™ s.t.- X = - y (mod g)



WEAK-CSIS 1s Total

rXm
q

INPUT: cZ
' witl(m — dlog(q) > rlog(q)
Ourrut: X ¥ € {0,1}™ s.t.- X = - y (mod g)
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WEAK-CSIS is in PWPP

Lemma

For any z € {0,1}"198(9)4 and any b € Zg, we can
efficiently compute a binary solution of the form

X = [* x---% z| for the equation Gx =b (mod g).

Since m > (r + d) log(q), there exist more than

2log(a)r — g7 x € {0,1}™ such that Gx = b (mod g).

There exist x # y such that Ax = Ay (mod g)
and Gx = Gy = b (mod g).




WEAK-CSIS 1s PWPP-hard

PWPP:
Given a circuit C : {0,1}" — {0,1}", with m < n.

Find a collision, i.e x # y s.t. C(x) = C(y).
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WEAK-CSIS is PWPP-hard
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to find a collision!
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During the reduction we
have to preserve totality!
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Hash Function from WEAK-CSIS

Hash function family:

c Z2*™ binary

. Key: = ZZ xm, : :
with m > log(q)(r 4+ d) invertible matrix

For x € {0,1}"%108(4)  yse Lemma to find

z € {0,1}%108@) s t. G { } =0 (mod g).

X

* Hash(x):
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Bottlenecks
o cryptography is based on problems that are hard on average!

o NP-hard problems do not suffice for cryptography.



Approximate Short Integer Solution
(APPROXSIS)

INPUT: - € Zy*™, with m > log(q)r.
Outrut: X s.t. |[x]|2 < B,- X = () (mod q)



Average Short Integer Solution
(AVERAGESIS)

INPUT: - ~ U {ngm} , with m > log(q)r.
OutruT: X s.t. ||X||eo < 1,- X = () (mod q)
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Worst-to-Average Case Reduction for SIS

Informal Theorem
There is a randomized Cook reduction from the worst-case
problem APPROXSIS to the average-case problem AVERAGESIS!

This result is the foundation of lattice based cryptography.
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Can we achieve Cryptographic Utopia?

Hardness of Approximation

AT for PWPP (PCP for PWPP)
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PWPP WEAK-CSIS
known from
definition of PWPP APPROXSIS
lattice-based
cryptography

AVERAGESIS B CRHEF

known from
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Can we achieve Cryptographic Utopia?
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Completion of the cycle

would imply that PWPP
exactly describes the
hardness of CRHF! APPROXSIS

AVERAGESIS B CRHEF
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Can we achieve Cryptographic Utopia?
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m) G —bmody)
X

For any z € {0,1}"1°8(0)4 and any b € Z¢, we can

efficiently compute a bmary solution of the form
X =[x x---% z] for the equation Gx =b (mod 7).
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During the reduction we
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