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Introduction

The Double Slit Experiment

Light: Wave or particle?!
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Introduction

The Double Slit Experiment

Wave: Expected result (one slit)
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Introduction

The Double Slit Experiment

Wave: Expected result (double slit)
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The Double Slit Experiment

Particle: Expected result (one slit)
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The Double Slit Experiment

Particle: Expected result (double slit)
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Introduction

The Double Slit Experiment

Photon beam in one slit
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The Double Slit Experiment

Photon beam in double slit
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Introduction

The Double Slit Experiment

"WOhat we observe is not natuve itself, but
natuve exposed to our method of
questioning."

Werner Fleisenberg
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Quantum Information

Classical vs Quantum Bits

@ All classical info can be written down in terms of classical bits.

@ All classical computing, communication and cryptographic
systems, work with classical bits

@ Quantum Crypto works with qubits, that are different than

classical bits.
1
0—10)= <0>

1—>11>:((1’>



Quantum Information
What do qubits look like?

) = (g) = 0[0) + B|1) € C2

B

0

|1)) = is a superposition of |0) and |1)



Quantum Information
What do qubits look like?

o For real vectors o? + %2 =1

Ka|¢>=:<g>

o\ T
Bra (1= (1017 = (5.) = (@ )
Inner Product (¢||v)) = (2[y))

Operations must preserve inner product (unitary operations)

No-cloning theorem



Quantum Information
Many Qubits!

Standard /computational basis:
X = xi,..xp € {0,1}"
d = 2" possible strings

0

x — |x) =

o = O

0
Quantum State of n qubits:

W) = er{o,1}n ax|x), er{o,l}" lal =1
to sum up:
|W) € C with d = 2", (W|W) =1



Quantum Information
Many Qubits!: Example

Standard basis for two qubits:

1 0 0 0
0 1 0 0
|00) = 0 , 101) = 0 , |10) = 1 ,11) = 0
0 0 0 1
Equal Superposition:
1
1
W) = 3100) + 3[01) + 3|10) + 3[11) =.....=53 | |
1

(W|V) =1, valid 2-qubit quantum state!



Quantum Information

Measuring qubits

0

) = (5) = al0)+ 5l



Quantum Information

Measuring qubits

@ When we measure, the superposition collapses, we loose
information about « and 3 and we are just in one of the two
classic basis states.

@ Outcome "|0)" (horizontal polarization)
po = [(W[0)[* = |af?

@ Outcome "|1)" (vertical polarization)

= [(V[1)]* = |87
° IOéI2 +8P =1
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Quantum Circuits

Quantum Circuits

e A model must be chosen when the complexity of quantum
computation is studied.

e A quantum circuit is an acyclic network of quantum gates
connected by qubit wires. Here is a hypothetical example:

Y
> 1

Xy @, 4

XZ YZ
@3 D5

6 —i"| ]

X4 Y3

e Any general quantum operation could be considered as a gate
but we need to choose a set of allowable gates in order to use the
model



Quantum Circuits

Universal set of gates

Toffoli gate Hadamard gate
la) B 1 N
by ———— It) 2 F 0+
c) lc®ab)
Phase-shift gate Ancillary gate

ja) i |a) 10)
Erasure gate

:



Quantum Circuits

Poly-time quantum algorithms

e In the quantum circuit model, a quantum algorithm Q@ is
described by a family of quantum circuits

Q={Q,:neN}

e Such a family is polynomial-time uniform if there exists a
classical algorithm that produces a description of Q, for each input
n € N, in time polynomial in n

e To run this algorithm on an input x of length n we aply @, to
|x) and measure the output in the standard basis.

|X> Qn
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BQP

e Perhaps the most fundamentally important quantum complexity
class is BQP, which stands for Bounded-error Quantum Polynomial
time (which we equate with polynomial-time uniform circuit
families)

BQP Let A = (Ayes Ano) be a promise problem and let ,b : N — [0,1] be functions.
Then A € BQP(g,b) if and only if there exists a polynomial-time generated family of
quantum circuits Q = {Q, : n € N}, where each circuit Q, takes n input qubits and
produces one output qubit, that satisfies the following properties:

1. if x € Ayes then Pr(Q accepts x] > a(|x|), and
2. if x € Ano then Pr(QQ accepts x] < b(|x|).
The class BQP is defined as BQP = BQP(2/3,1/3).

e A wide range of values can be substituted for 2/3 without
changing the class.



BQP

Relation of BQP to classical classes

BPP C BQP C PP.

The containment BPP C BQP is obvious if you believe the claims
about universal gate sets from a few slides ago. . .

. classical Boolean logic gates (including fanouts) and
randomly generated bits can be simulated with quantum circuits.
eThere are multiple ways to prove the containment BQP C PP
Intuitive proof: unbounded error probabilistic computations can
simulate interference in quantum computations. (E.g, run two
probabilistic processes, and condition on obtaining the same
outputs.)

Abstract proof: PP computations can simulate exponential-size
matrix multiplication problems of certain types.



Diagram of Classes

EXP

PSPACE
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e The complexity class MA is defined similarly to NP, except that
the verification procedure is probabilistic.

MA A promise problem A = (Aye, Ano) is in MA if and only if there exists a
polynomial-bounded function p and a probabilistic polynomial-time Turing ma-
chine M with the following properties. For every string x € Ay, it holds that
Pr[M accepts (x,y)] > 2 for some string y € 27U*D); and for every string x € Ano,
it holds that Pr[M accepts (x,)] < 1 for all strings y € Z7(]).

e MA stands for Merlin-Arthur, and is one of multiple complexity
classes represented by Arthur-Merlin games.



QMA
Diagram of Classes

EXP

PSPACE

JP
N
BQP MA

|

BPP NP

N,



QMA: a quantum analogue of NP

e One way to define a quantum computational analogue of NP (or
MA, really) is to extend the definition in two ways:

1. Allow the verification procedure to be a quantum computation.
2. Allow the proof (or certificate) to be a quantum state.

QMA Let A = (Ayes, Ano) be a promise problem, let p be a polynomial-bounded function,
and leta, b : N — [0,1] be functions. Then A € QMA,(a, b) if and only if there exists
a polynomial-time generated family of circuits Q = {Q» : n € IN}, where each circuit
Qn takes 1 + p(n) input qubits and produces one output qubit, with the following
properties:

1. Completeness. For all x € Ayes, there exists a p(|x|)-qubit quantum state p such
that Pr[Q accepts (x, p)] > a(|x|).

2. Soundness. For all x € Ano and all p(|x|)-qubit quantum states p it holds that
Pr[Q accepts (x,0)] < b(|x]).

Also define QMA = (J, QMAF(Z/ 3,1/3), where the union is over all polynomial-
bounded functions p.



Diagram of Classes
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Complete promise problem for QMA

There are several problems known to be complete for QMA (with
respect to classical polynomial-time many-to-one reductions).

THE k-LOCAL HAMILTONIAN PROBLEM

Input: A collection Hy, ..., Hy of k-local Hermitian matrices with entries indexed by strings of
length n and satisfying ||H;|| < 1forj=1,...,m.

Yes: There exists an n-qubit quantum state |¢) such that (|H; + - - - + Hp|y) < —1.
No: For every n-qubit quantum state |¢) it holds that (y|Hjy + - - - + Hy|y) > 1.

The 2-local Hamiltonian problem is complete for QMA
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Group-theoretic problems

Group-theoretic problems

e Let G be a finite group whose elements can be represented
(uniquely) by binary strings of a given length n.

e Efficient computation of group operations: Given two elements
g, h € G, it is assumed that the group operations can be efficiently
implemented by quantum circuits:

1. Multiplication: |g)|h) — |g)|gh).

2. Inverse: |g) — |g71).

e Abstraction:

It is sometimes helpful to view such a group as a black box group;
the group operations are performed by a black box (or group
oracle), and string representatives of elements are independent of
group structure.

For those not familiar with groups, you could think of G as the
collection of invertible n x n matrices with entries in {0,...,p — 1}
(for prime p), assuming all arithmetic is done modulo p.



Group-theoretic problems

Group membership

Consider the group membership problem:

Input: Group elements gy, ..., gk and h of G.

Yes: he{gy,..., gi)-

No: h¢(g1,..., gk)-

Notation: (g1, ..., gk) is the subgroup of G generated by gi, .. ., gk-
(This is every element that can be obtained by multiplying any number
of elements from {gy, . .., gk} in any order, any number of times.)

The group membership problem is in NP.

Agivenh € (g1,..., gx) might require an exponentially long product of
elementsin{gs, ..., gk} to be reached. ..

... but the reachability lemma of Babai and Szemerédy implies that
there is a short straight-line program generating h from gy, .. ., gx-



Group-theoretic problems

Group non-membership

Input: Group elements g1, ..., gx and h of G.
Yes: h¢(g1,....9x)
No: he (g, ..., gk)-

Theorem. The group non-membership problem is in QMA.

The idea is simple: for H = (g1, .. ., gk), the quantum proof that h ¢ H
will be the state



Group-theoretic problems

Let us suppose momentarily that we have a copy of the state

W= g 2o

Consider what happens when we run the following algorithm:
o ——

H)

The controlled-multiplication gate A(M}y,) operates as

A(Mn]):10)|a) = [0)|a)  and  A(My):[1}|a) — [1}[h-a)



Group-theoretic problems

NO-input case

Consider first the case of a NO-input: h € H = (g1
o —@—— l

H)

Given that h € H, we have
My [H) = [hH) =[H),

so the controlled-multiplication operation has no effect.

As H? |0) = |0), the measurement will always result in the outcome 0
(with certainty).



Group-theoretic problems

YES-input case

Now consider the case of a YES-input: h ¢ H = (g1, ..., gk)-
o — @

[H)

Given that h ¢ H, we have
Mhn [H) =[hH) L [H),

so the controlled-multiplication operation acts just like a measurement
of the top qubit.

The reduced state of the top qubit will be totally mixed after the
multiplication: the measurement result will be a uniform random bit.



Group-theoretic problems

But we can't trust the proof...

There is a problem, however. . .we cannot trust that the given quantum
state [\p) is equal to [H).

For an arbitrary state hb), any behavior is possible:
o —@— ?

hb)

Solution. Before running the membership test with h, run the test with
a (suitable) random choice of elements a4, ..., ax € H in place of h.

If non-membership is indicated for any of the test inputs, immediately
reject: the state [\p) must be invalid. Otherwise, run the membership
test for h on the resulting state.



Group-theoretic problems

Modified proof

Consider what happens when the membership test is run for some
element a € H, conditioned on seeing the output 0:

(Condition on
0) { . . outcome 0)

) +Ma )

hb)

After repeating with a4, . . ., a, the resulting state will be close to
Y Maqlp) (normalized).
aeH

This state is now suitable for the membership test on h (because it is
nearly invariant under left multiplication by elements of H).
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Interactive proof systems

The notion of efficient verification can be extended to an interactive
setting. Interactive proof systems model this situation.

Input x Input x

Verifier Communication Prover

P ——
computationally  Pe————— COMputationally

bounded unbounded

Output: 0 or 1 (“reject” or “accept”).

To say that a promise problem A has an interactive proof system
means that there exists a verifier meeting two conditions:

Completeness: For every input x € Ayes, there must exist a prover
strategy causing the verifier to accept with high probability.

Soundness: For every input x € Ay, all prover strategies must cause
the verifier to reject with high probability.



Complexity classes for interactive proofs

Several variants of classical interactive proof systems have been
studied, and many results are known about these models.

Two fundamental complexity classes based on these models:

AM The class of promise problems having classical interactive
proof systems with a constant humber of messages ex-
changed between the prover and verifier.

IP  The class of promise problems having classical interactive
proof systems (allowing any polynomial number of mes-
sages to be exchanged between the prover and verifier).

It is known that IP = PSPACE.
[LUND, FORTNOW, KARLOFF, & NISAN 1990; SHAMIR 1990]

Both classes are highly robust with respect to choices of error bounds.
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Quantum interactive proof systems

The quantum interactive proof system model works exactly the
same as the classical model, except that the prover and verifier may
exchange and process quantum information.

General assumptions and notions of completeness and soundness are
unchanged. . .

The model may be formalized in terms of quantum circuits. An
illustration of an interaction:

ol s

(There are six messages in this example.)




QIP

We define complexity classes based on quantum interactive proofs as
follows:

QIP The class of promise problems having quantum inter-
active proof systems (allowing any polynomial number
of messages to be exchanged between the prover and
verifier).

QIP(m) The class of promise problems having quantum interac-
tive proof systems, where at most m messages are ex-
changed in total.

It holds that
QIP(3) = QIP = PSPACE;

guantum interactive proof systems are no more powerful than classical
ones, but offer a reduction in the number of required required.



EXP

PSPACE = QIP

PP/ -

QIP(2)

|

QMA = QIP(1) AM



Other topics in quantum complexity theory

There are many other topics in quantum complexity that have not been
discussed in this talk. Examples include:

Quantum query complexity and quantum communication complexity.

Hamiltonian complexity (quantum PCP theorem, relation to area
laws, ...).

Other variants of QMA and QIP (multiple-Merlin QMA, competing
prover and zero-knowledge quantum interactive proofs, .. .).

Quantum advice.
BQP versus the polynomial-time hierarchy.

Complexity-theoretic aspects of limited quantum models (such as
linear optical quantum computers, the one-clean-qubit model,
matchgate circuits, . ..).

Bounded depth and bounded space quantum complexity classes.



Open problem: upper-bounding entangled provers

Proving upper bounds on entangled provers that cannot communicate
is a major challenge.

hb)

no communication
Prover 1 between provers Prover 2

Verifier

QMIP The class of promise problems having multi-prover quantum
interactive proof systems.
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|

QMA = QIP(1) AM

I

BQP MA

]

BPP NP
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* Announced by Thomas Vidick (joint work with Tsuyoshi Ito) in April 2012.



References

@ John Watrous, Quantum Computational Complexity.

@ Scott Aaronson, Quantum Complexity Theory Lecture Notes,
MIT.



	The Dual Nature of Light
	Quantum Information
	Quantum Circuits
	BQP
	QMA
	Group-theoretic problems
	QIP

