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Social Choice

Setting

Set A of possible alternatives (candidates) .
Set N = {1, . . . ,n} of agents (voters).
∀ agent i has a (private) linear order �i∈ L over alternatives A.

Social choice function (or mechanism ) F : Ln → A mapping the
agents’ preferences to an alternative.

Desirable Properties of Social Choice Functions

Onto : Range is A.
Unanimous : If a is the top alternative in all �1, . . . ,�n, then

F(�1, . . . ,�n) = a
Not dictatorial : For each agent i, ∃ �1, . . . ,�n :

F(�1, . . . ,�n) 6= agent’s i top alternative
Strategyproof or truthful : ∀ �1, . . . ,�n, ∀ agent i, ∀ �′i ,

F(�1, . . . ,�i, . . . ,�n) �i F(�1, . . . ,�′i , . . . ,�n)
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Impossibility Result

Gibbard-Satterthwaite Theorem (mid 70’s)

Any strategyproof and onto social choice function on more than 2
alternatives is dictatorial .

Escape Routes

Randomization
Monetary payments
Voting systems computationally hard to manipulate.

Restricted domain of preferences – Approximation
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Single Peaked Preferences and Medians

Single Peaked Preferences

One dimensional ordering of alternatives, e.g. A = [0, 1]
Each agent i has a single peak x∗i ∈ A such that for all a, b ∈ A :

b < a ≤ x∗i ⇒ a �i b
x∗i ≥ a > b ⇒ a �i b

Median Voter Scheme [Moulin 80], [Sprum 91], [Barb Jackson 94]

A social choice function F on a single peaked preference domain is
strategyproof, onto, and anonymous iff there exist y1, . . . , yn−1 ∈ A
such that for all (x∗1 , . . . , x

∗
n),

F(x∗1 , . . . , x
∗
n) = median(x∗1 , . . . , x

∗
n, y1, . . . , yn−1)

0 11x
∗

2x
∗

3x
∗

4x
∗

5x
∗

6x
∗

7x
∗
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Single Peaked Preferences and Medians

Select a Single Location on the Line

The median of (x1, . . . , xn) is strategyproof (and Condorcet winner) .
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Single Peaked Preferences and Generalized Medians

Generalized Median Voter Scheme [Moulin 80]

A social choice function F on single peaked preference domain [0, 1] is
strategyproof and onto iff it is a generalized median voter scheme
(GMVS), i.e., there exist 2n thresholds {αS}S⊂N in [0, 1] such that:

α∅ = 0 and αN = 1 (onto condition),
S ⊆ T ⊆ N implies αS ≤ αT, and
for all (x∗1 , . . . , x

∗
n), F(x∗1 , . . . , x

∗
n) = maxS⊂N min{αS, x∗i : i ∈ S}

0 11x
∗

2x
∗

3x
∗

4x
∗

5x
∗

6x
∗

7x
∗
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k-Facility Location Game

Strategic Agents in a Metric Space

Set of agents N = {1, . . . ,n}
Each agent i wants a facility at xi .
Location xi is agent i’s private information .

Each agent i reports that she wants a facility at yi .
Location yi may be different from xi.

1

2

3
x1

x2

x3
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Mechanisms and Agents’ Preferences

(Randomized) Mechanism

A social choice function F that maps a location profile y = (y1, . . . , yn)
to a (probability distribution over) set(s) of k facilities .

Connection Cost
(Expected) distance of agent i’s true location to the nearest facility:

cost[xi,F(y)] = d(xi,F(y))

a b

c

connection cost = a
(a < b < c)
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Desirable Properties of Mechanisms

Strategyproofness

For any location profile x, agent i, and location y:
cost[xi,F(x)] ≤ cost[xi,F(y, x−i)]

Group-Strategyproofness

For any location profile x, set of agents S, and location profile yS:
∃ agent i ∈ S : cost[xi,F(x)] ≤ cost[xi,F(yS, x−S)]

Efficiency

F(x) should optimize (or approximate) a given objective function .

Social Cost : minimize
∑n

i=1 cost[xi,F(x)]
Maximum Cost : minimize max{cost[xi,F(x)]}

Minimize p-norm of (cost[x1,F(x)], . . . , cost[xn,F(x)])
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1-Facility Location on the Line

1-Facility Location on the Line

The median of (x1, . . . , xn) is strategyproof and optimal .
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1-Facility Location in Other Metrics

1-Facility Location in a Tree [Schummer Vohra 02]

Extended medians are the only strategyproof mechanisms.
Optimal is an extended median, and thus strategyproof .

1-Facility Location in General Metrics

Any onto and strategyproof mechanism is a dictatorship [SV02]

The optimal solution is not strategyproof !
Deterministic dictatorship has cost ≤ (n− 1)OPT .
Randomized dictatorship has cost ≤ 2 OPT [Alon FPT 10]

Dimitris Fotakis Mechanism Design without Money



1-Facility Location in Other Metrics

1-Facility Location in a Tree [Schummer Vohra 02]

Extended medians are the only strategyproof mechanisms.
Optimal is an extended median, and thus strategyproof .

1-Facility Location in General Metrics

Any onto and strategyproof mechanism is a dictatorship [SV02]

The optimal solution is not strategyproof !

Deterministic dictatorship has cost ≤ (n− 1)OPT .
Randomized dictatorship has cost ≤ 2 OPT [Alon FPT 10]

Dimitris Fotakis Mechanism Design without Money



1-Facility Location in Other Metrics

1-Facility Location in a Tree [Schummer Vohra 02]

Extended medians are the only strategyproof mechanisms.
Optimal is an extended median, and thus strategyproof .

1-Facility Location in General Metrics

Any onto and strategyproof mechanism is a dictatorship [SV02]

The optimal solution is not strategyproof !
Deterministic dictatorship has cost ≤ (n− 1)OPT .

Randomized dictatorship has cost ≤ 2 OPT [Alon FPT 10]

Dimitris Fotakis Mechanism Design without Money



1-Facility Location in Other Metrics

1-Facility Location in a Tree [Schummer Vohra 02]

Extended medians are the only strategyproof mechanisms.
Optimal is an extended median, and thus strategyproof .

1-Facility Location in General Metrics

Any onto and strategyproof mechanism is a dictatorship [SV02]

The optimal solution is not strategyproof !
Deterministic dictatorship has cost ≤ (n− 1)OPT .
Randomized dictatorship has cost ≤ 2 OPT [Alon FPT 10]

Dimitris Fotakis Mechanism Design without Money



2-Facility Location on the Line

2-Facility Location on the Line

The optimal solution is not strategyproof !

Two Extremes Mechanism [Procacc Tennen 09]

Facilities at the leftmost and at the rightmost location :
F(x1, . . . , xn) = (min{x1, . . . , xn},max{x1, . . . , xn})

Strategyproof and (n− 2)-approximate .

x2 = 0 x3=1+εx1 = –1 
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Approximate Mechanism Design without Money

Approximate Mechanism Design [Procacc Tennen 09]

Sacrifice optimality for strategyproofness .
Best approximation ratio by strategyproof mechanisms?
Variants of k-Facility Location, k = 1, 2, . . ., among the central
problems in this research agenda.

2-Facility Location on the Line – Approximation Ratio

Upper Bound Lower Bound
Deterministic n− 2 [PT09] n− 2 [FT12]

Randomized 4 [LSWZ10] 1.045 [LWZ09]
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Randomized 2-Facility Location [Lu Sun Wang Zhu 10]

Proportional Mechanism

Facilities open at the locations of selected agents .
1st Round: Agent i is selected with probability 1/n

2nd Round: Agent j is selected with probability d(xj,xi)∑
`∈N d(x`,xi)

Strategyproof and 4-approximate for general metrics.
Not strategyproof for > 2 facilities !
Profile (0 :many, 1 :50, 1 + 105 :4, 101 + 105 :1), 1→ 1 + 105 .

7

6
5

1/3

5/11

5/12 7/12

6/11 6/13 7/13

1/3

1/3
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k-Facility Location for k ≥ 3

Imposing mechanisms

Imposing mechanisms may penalize liars by forbidding the
agents to connect to certain facilities.
Agents connect to the facility nearest to reported location.

a
c

b

connection cost = b
(a < b < c)
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k-Facility Location for k ≥ 3

Imposing mechanisms

Imposing mechanisms may penalize liars by forbidding the
agents to connect to certain facilities.
Agents connect to the facility nearest to reported location.

Differentially Private Imposing Mechanisms [Niss Smorod Tennen 10]

Differentially private mechs are almost strategyproof [McSTal 07].
Complement them with an imposing gap mechanism that
penalizes liars .

For k-Facility Location on the line, randomized strategyproof
mechanism with cost ≤ OPT + n2/3 .
OPT may be O(1), running time exponential in k.
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Randomized k-Facility Location for k ≥ 3 [F. Tzamos 10]

Winner-Imposing Mechanisms

Agents with a facility at their reported location connect to it.
Otherwise, no restriction whatsoever.

Winner-imposing version of the Proportional Mechanism is
strategyproof and 4k-approximate in general metrics, for any k.

a
c

b

connection cost = a
(a < b < c)

a

c

b

connection cost = c
(a < b < c)
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Randomized k-Facility Location on the Line [F. Tzamos 13]

Equal-Cost Mechanism

Optimal maximum cost OPT = C/2 .
Cover all agents with k disjoint intervals of length C .

Place a facility to an end of each interval .
With prob. 1/2 , facility at L - R - L - R - . . .
With prob. 1/2 , facility at R - L - R - L - . . .

Agents’ Cost and Approximation Ratio

Agent i has expected cost = (C− xi)/2 + xi/2 = C/2 = OPT .

Approx. ratio: 2 for the maximum cost , n for the social cost.

length C

x1 x2 xi xnx3 x4 . . . . . . xn – 1
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Randomized k-Facility Location on the Line [F. Tzamos 13]

Equal-Cost Mechanism

Cover all agents with k disjoint intervals of length C .
Place a facility to an end of each interval .

Strategyproofness

Agents do not have incentives to lie and increase OPT.
Let agent i declare yi and decrease OPT to C′/2 < C/2.

Distance of xi to nearest C′-interval ≥ C− C′ .
i’s expected cost ≥ (C− C′)/2 + C/2 = C− C′/2> C/2

x1 x2 xix3 x4 yi

length C
length C'
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Randomized k-Facility Location on the Line [F. Tzamos 13]

Equal-Cost Mechanism

Cover all agents with k disjoint intervals of length C .
Place a facility to an end of each interval .

Agents with Concave Costs

Generalized Equal-Cost Mechanism is strategyproof and has the
same approximation ratio if agents’ cost is a concave function of
distance to the nearest facility.
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Deterministic 2-Facility Location on the Line

Approximation Ratio ≤ n− 2 [PT09]

Place facilities at the leftmost and at the rightmost location :
F(x1, . . . , xn) = (min{x1, . . . , xn},max{x1, . . . , xn})

Approximation Ratio > (n− 1)/2 [LSWZ10]

For all a < b < 1, any deterministic strategyproof mechanism F
with approximation ratio < (n− 1)/2 must have:

F(a, . . . , a︸ ︷︷ ︸
(n−1)/2

, b, . . . , b︸ ︷︷ ︸
(n−1)/2

, 1) = (a, b)

Contradiction for a = 0 and b = 1/n2 .
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Deterministic 2-Facility Location on the Line

Approximation Ratio ≤ n− 2 [PT09]
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Approximability by Deterministic Mechanisms [F. Tzam. 12]

Deterministic 2-Facility Location on the Line

Nice mechanisms ≡ deterministic strategyproof mechanisms with a
bounded approximation .

Niceness objective-independent and facilitates the characterization!

Any nice mechanism F for n ≥ 5 agents:

Either F(x) = (min x,max x) for all x (Two Extremes).
Or admits unique dictator j, i.e., xj ∈ F(x) for all x.

Dictatorial Mechanism with Dictator j

Consider distances dl = xj −min x and dr = max x− xj .
Place the first facility at xj and the second at xj −max{dl, 2dr} ,
if dl > dr, and at xj + max{2dl, dr} , otherwise.
Strategyproof and (n− 1)-approximate .
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Approximability by Deterministic Mechanisms [F. Tzam. 10]

Consequences

Two Extremes is the only anonymous nice mechanism for
allocating 2 facilities to n ≥ 5 agents on the line.
The approximation ratio for 2-Facility Location on the line by
deterministic strategyproof mechanisms is n− 2 .

Deterministic k-Facility Location, for all k ≥ 3

There are no anonymous nice mechanisms for k-Facility Location for
all k ≥ 3 (even on the line and for n = k + 1 ).

Deterministic 2-Facility Location in General Metrics

There are no nice mechanisms for 2-Facility Location in metrics more
general than the line and the circle (even for 3 agents in a star ).
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Consistent Allocation for Well-Separated Instances

Well-Separated Instances

Let F be a nice mechanism for k-FL with approximation ratio ρ.
(k + 1)-agent instance x is (i1| · · · |ik−1|ik, ik+1)-well-separated if
xi1 < · · · < xik+1 and ρ(xik+1 − xik) < min2≤`≤k{xi` − xi`−1} .

x1 x2 x3 x4

(1|2|3,4)-well-separated instance 
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Consistent Allocation for Well-Separated Instances

The Nearby Agents Slide on the Right

Let x be (i1| · · · |ik−1|ik, ik+1)-well-separated with Fk(x) = xik .
Then, for all (i1| · · · |ik−1|ik, ik+1)-well-separated
x′ = (x−{ik,ik+1}, x

′
ik , x
′
ik+1

) with xik ≤ x′ik , Fk(x′) = x′ik .

The Nearby Agents Slide on the Left

Let x be (i1| · · · |ik−1|ik, ik+1)-well-separated with Fk(x) = xik+1 .
Then, for all (i1| · · · |ik−1|ik, ik+1)-well-separated
x′ = (x−{ik,ik+1}, x

′
ik , x
′
ik+1

) with x′ik+1
≤ xik+1 , Fk(x′) = x′ik+1

.

x1 x2 x3 x4

k = 3

x1 x2 x3 x4
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Inexistence of Anonymous Nice Mechanisms for k ≥ 3

Theorem

There are no anonymous nice mechanisms for k-Facility Location for
all k ≥ 3 (even on the line and for n = k + 1 ).

Proof Sketch for k = 3 and n = 4

Image set I4(x−4) = {a : F(x−4, y) = a for some location y}
Set of locations where a facility can be forced by agent 4 in x−4 .
F strategyproof iff all agents get the best in their image set .
Contradicts bounded approximation ratio of F.

x1 x2 x4 x3

x1 x2 x3 x4x3 x4
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Nice Mechanisms for 2-Facility Location on the Line

Characterization for 3-Agent Instances

Any nice mechanism F for n = 3 agents:

∃ ≤ 2 permutations π1, π2 with π1(2) = π2(2) : for all x
compatible with π1 or π2, med x ∈ F(x) ( partial dictator ).
For any other π and x compatible with π, F(x) = (min x,max x).

Characterization for 3-Location Instances
Any nice mechanism F for n ≥ 5 agents on 3 locations:

Either has F(x) = (min x,max x) for all x.
Or admits a unique dictator j , i.e., xj ∈ F(x) for all x.

General Characterization
Any nice mechanism F for n ≥ 5 agents:

Either has F(x) = (min x,max x) for all x.
Or admits a unique dictator j, i.e., xj ∈ F(x) for all x.
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Well-Separated Instances

Allocation for Fixed Permutation of Nearby Agents

For any agent i and any loc. a, ∃unique threshold p ∈ [a,+∞) ∪ {↑} :
∀(i|j, k)-well-separated x with xi = a,

F2(x) = med(p, xj, xk)

Allocation for Nearby Agents

∀(i|j, k)-w.s. x with xi = a : threshold p1 s.t. F2(x) = med(p1, xj, xk)

∀(i|k, j)-w.s. x with xi = a : threshold p2 s.t. F2(x) = med(p2, xj, xk)

∀ i-left-w.s. x with xi = a : the rightmost facility by gmvs on x−i
with α∅ = a, α{k} = p1, α{j} = p2, α{j,k} = ↑ :

F2(x) = max{min{xj, p2},min{xk, p1}}
Due to bounded approximation ratio, either p1 = ↑ or p2 = ↑ .
If p2 = ↑ , j is the preferred agent of (i, a), and threshold p = p1 :

F2(x) = max{xj,min{xk, p}}
If p = a, then F2(x) = max{xj, xk} . If p = ↑, then F2(x) = xj .
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Well-Separated Instances

Allocation for Nearby Agents

For any agent i and any location a,
∃unique threshold p ∈ [a,+∞)∪ {↑}
and preferred agent ` 6= i :
∀ i-left-well-separated x with xi = a,

F2(x) =
{

x` if x` ≥ p
med(p, xj, xk) otherwise

a xj

xk

p

(i |
 k,

 j)-
well

-

sep
ara

ted

xj

xk

p

xj

p

(i |
 j, 
k)-

well
-

sep
ara

ted

Dimitris Fotakis Mechanism Design without Money



Extension to General Instances
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The Range of the Threshold

The Threshold Can Only Take Two Extreme Values

For any agent i and location a :
The left threshold of (i, a) is either a or ↑
The right threshold of (i, a) is either a or ↓

xk

a

xjxi

instance x: 
(i | j, k)-well-
separated pi

ykyj

instance y: 
(j | i, k)-well-
separated pj

zj

instance z: 
(j, i | k)-well-
separated

wjwi

instance w: 
(i, j | k)-well-
separated pi

yi

r

zkzi

(i, a)

(j, yj)

pj

(j, yj)(k, r)

pk

wk

(i, a)

pk

(k, r)
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Nice Mechanisms for 2-Facility Location on the Line

Characterization for 3-Agent Instances

Any nice mechanism F for n = 3 agents:

∃ ≤ 2 permutations π1, π2 with π1(2) = π2(2) : for all x
compatible with π1 or π2, med x ∈ F(x) ( partial dictator ).
For any other π and x compatible with π, F(x) = (min x,max x).

Characterization for 3-Location Instances
Any nice mechanism F for n ≥ 5 agents on 3 locations:

Either has F(x) = (min x,max x) for all x.
Or admits a unique dictator j, i.e., xj ∈ F(x) for all x.

General Characterization
Any nice mechanism F for n ≥ 5 agents:

Either has F(x) = (min x,max x) for all x.
Or admits a unique dictator j, i.e., xj ∈ F(x) for all x.
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∃ ≤ 2 permutations π1, π2 with π1(2) = π2(2) : for all x
compatible with π1 or π2, med x ∈ F(x) ( partial dictator ).
For any other π and x compatible with π, F(x) = (min x,max x).

Characterization for 3-Location Instances
Any nice mechanism F for n ≥ 5 agents on 3 locations:

Either has F(x) = (min x,max x) for all x.
Or admits a unique dictator j, i.e., xj ∈ F(x) for all x.

General Characterization
Any nice mechanism F for n ≥ 5 agents:

Either has F(x) = (min x,max x) for all x.
Or admits a unique dictator j, i.e., xj ∈ F(x) for all x.
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Research Directions

Lower Bounds for Randomized Mechanisms
Lower bound of 2 for mechanisms restricted to agents’ locations.
Exploit well-separated instances and extend the lower bound to
unrestricted randomized mechanisms.

The Power of Verification in Mechanism Design without Money

(Implicit or explicit) verification restricts agents’ declarations.

ε-verification : agent i at xi can only declare anything in
[xi − ε, xi + ε] , [Carag. Elk. Szeg. Yu 12] [Archer Klein. 08]

Winner-imposing : lies that increase mechanism’s cost cause a
(proportional) penalty to the agent [F. Tzamos 10] [Koutsoupias 11]

Non-symmetric verification: conditions under which the
mechanism gets some advantage .
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Research Directions

Non-Symmetric Verification to Particular Domains

Combinatorial Auctions without money, assuming that bidders
do not overbid on winning sets [F. Krysta Ventre 13]

k-Combinatorial Public Project without overbidding on
winning (sub)sets.

A Priori Verification of Few Agents

What if declarations of few agents can be verified before the
mechanism is applied.
O(1)-approximation achievable for k-Facility Location by
verifying the locations of O(k) selected agents?
Minimum #agents verified to achieve a given approximation
ratio for a particular problem.
Choice of agents, implementation, what if an agent caught lying?
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