Mechanism Design without Money

Dimitris Fotakis

Viewpoint shaped through joint work with Christos Tzamos

Social Choice

Setting

- Set A of possible alternatives (candidates).
- Set $N=\{1, \ldots, n\}$ of agents (voters).
- \forall agent i has a (private) linear order $\succ_{i} \in L$ over alternatives A.

Social choice function (or mechanism) $F: L^{n} \rightarrow A$ mapping the agents' preferences to an alternative.

Social Choice

Setting

- Set A of possible alternatives (candidates).
- Set $N=\{1, \ldots, n\}$ of agents (voters).
- \forall agent i has a (private) linear order $\succ_{i} \in L$ over alternatives A.

Social choice function (or mechanism) $F: L^{n} \rightarrow A$ mapping the agents' preferences to an alternative.

Desirable Properties of Social Choice Functions

- Onto : Range is A.
- Unanimous: If a is the top alternative in all $\succ_{1}, \ldots, \succ_{n}$, then

$$
F\left(\succ_{1}, \ldots, \succ_{n}\right)=a
$$

- Not dictatorial: For each agent $i, \exists \succ_{1}, \ldots, \succ_{n}$:

$$
F\left(\succ_{1}, \ldots, \succ_{n}\right) \neq \text { agent's } i \text { top alternative }
$$

Social Choice

Setting

- Set A of possible alternatives (candidates).
- Set $N=\{1, \ldots, n\}$ of agents (voters).
- \forall agent i has a (private) linear order $\succ_{i} \in L$ over alternatives A.

Social choice function (or mechanism) $F: L^{n} \rightarrow A$ mapping the agents' preferences to an alternative.

Desirable Properties of Social Choice Functions

- Onto: Range is A.
- Unanimous: If a is the top alternative in all $\succ_{1}, \ldots, \succ_{n}$, then

$$
F\left(\succ_{1}, \ldots, \succ_{n}\right)=a
$$

- Not dictatorial: For each agent $i, \exists \succ_{1}, \ldots, \succ_{n}$:

$$
F\left(\succ_{1}, \ldots, \succ_{n}\right) \neq \text { agent's } i \text { top alternative }
$$

- Strategyproof or truthful : $\forall \succ_{1}, \ldots, \succ_{n}, \forall$ agent $i, \forall \succ_{i}^{\prime}$,

$$
F\left(\succ_{1}, \ldots, \succ_{i}, \ldots, \succ_{n}\right) \succ_{i} F\left(\succ_{1}, \ldots, \succ_{i}^{\prime}, \ldots, \succ_{n}\right)
$$

Impossibility Result

Gibbard-Satterthwaite Theorem (mid 70's)

Any strategyproof and onto social choice function on more than 2 alternatives is dictatorial .

Impossibility Result

Gibbard-Satterthwaite Theorem (mid 70's)

Any strategyproof and onto social choice function on more than 2 alternatives is dictatorial .

Escape Routes

- Randomization
- Monetary payments
- Voting systems computationally hard to manipulate.

Impossibility Result

Gibbard-Satterthwaite Theorem (mid 70's)

Any strategyproof and onto social choice function on more than 2 alternatives is dictatorial .

Escape Routes

- Randomization
- Monetary payments
- Voting systems computationally hard to manipulate.
- Restricted domain of preferences - Approximation

Single Peaked Preferences and Medians

Single Peaked Preferences

- One dimensional ordering of alternatives, e.g. $A=[0,1]$
- Each agent i has a single peak $x_{i}^{*} \in A$ such that for all $a, b \in A$:

$$
\begin{aligned}
b<a \leq x_{i}^{*} & \Rightarrow a \succ_{i} b \\
x_{i}^{*} \geq a>b & \Rightarrow a \succ_{i} b
\end{aligned}
$$

Single Peaked Preferences and Medians

Single Peaked Preferences

- One dimensional ordering of alternatives, e.g. $A=[0,1]$
- Each agent i has a single peak $x_{i}^{*} \in A$ such that for all $a, b \in A$:

$$
\begin{aligned}
b<a \leq x_{i}^{*} & \Rightarrow a \succ_{i} b \\
x_{i}^{*} \geq a>b & \Rightarrow a \succ_{i} b
\end{aligned}
$$

Median Voter Scheme [Moulin 800, [Sprum 91], [Barb Jackson 94]

A social choice function F on a single peaked preference domain is strategyproof, onto, and anonymous iff there exist $y_{1}, \ldots, y_{n-1} \in A$ such that for all $\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$,

$$
F\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)=\operatorname{median}\left(x_{1}^{*}, \ldots, x_{n}^{*}, y_{1}, \ldots, y_{n-1}\right)
$$

Single Peaked Preferences and Medians

Select a Single Location on the Line
The median of $\left(x_{1}, \ldots, x_{n}\right)$ is strategyproof (and Condorcet winner).

Single Peaked Preferences and Medians

Select a Single Location on the Line
The median of $\left(x_{1}, \ldots, x_{n}\right)$ is strategyproof (and Condorcet winner).

Single Peaked Preferences and Medians

Select a Single Location on the Line
The median of $\left(x_{1}, \ldots, x_{n}\right)$ is strategyproof (and Condorcet winner).

Generalized Median Voter Scheme [Moulin 80]

A social choice function F on single peaked preference domain $[0,1]$ is strategyproof and onto iff it is a generalized median voter scheme (GMVS), i.e., there exist 2^{n} thresholds $\left\{\alpha_{S}\right\}_{S \subset N}$ in $[0,1]$ such that:

- $\alpha_{\emptyset}=0$ and $\alpha_{N}=1$ (onto condition),
- $S \subseteq T \subseteq N$ implies $\alpha_{S} \leq \alpha_{T}$, and
- for all $\left(x_{1}^{*}, \ldots, x_{n}^{*}\right), F\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)=\max _{S \subset N} \min \left\{\alpha_{S}, x_{i}^{*}: i \in S\right\}$

k-Facility Location Game

Strategic Agents in a Metric Space

- Set of agents $N=\{1, \ldots, n\}$
- Each agent i wants a facility at x_{i}. Location x_{i} is agent i 's private information.

k-Facility Location Game

Strategic Agents in a Metric Space

- Set of agents $N=\{1, \ldots, n\}$
- Each agent i wants a facility at x_{i}.

Location x_{i} is agent i 's private information.

- Each agent i reports that she wants a facility at y_{i}.

Location y_{i} may be different from x_{i}.

Mechanisms and Agents' Preferences

(Randomized) Mechanism
A social choice function F that maps a location profile $y=\left(y_{1}, \ldots, y_{n}\right)$ to a (probability distribution over) set(s) of k facilities .

Mechanisms and Agents' Preferences

(Randomized) Mechanism

A social choice function F that maps a location profile $y=\left(y_{1}, \ldots, y_{n}\right)$ to a (probability distribution over) set(s) of k facilities .

Connection Cost

(Expected) distance of agent i 's true location to the nearest facility:

$$
\operatorname{cost}\left[x_{i}, F(y)\right]=d\left(x_{i}, F(y)\right)
$$

Desirable Properties of Mechanisms

Strategyproofness

For any location profile x, agent i, and location y :

$$
\operatorname{cost}\left[x_{i}, F(\boldsymbol{x})\right] \leq \operatorname{cost}\left[x_{i}, F\left(y, x_{-i}\right)\right]
$$

Desirable Properties of Mechanisms

Strategyproofness

For any location profile x, agent i, and location y :

$$
\operatorname{cost}\left[x_{i}, F(x)\right] \leq \operatorname{cost}\left[x_{i}, F\left(y, x_{-i}\right)\right]
$$

Group-Strategyproofness

For any location profile \boldsymbol{x}, set of agents S, and location profile \boldsymbol{y}_{S} :

$$
\exists \text { agent } i \in S: \operatorname{cost}\left[x_{i}, F(x)\right] \leq \operatorname{cost}\left[x_{i}, F\left(y_{S}, x_{-S}\right)\right]
$$

Desirable Properties of Mechanisms

Strategyproofness

For any location profile \boldsymbol{x}, agent i, and location y :

$$
\operatorname{cost}\left[x_{i}, F(x)\right] \leq \operatorname{cost}\left[x_{i}, F\left(y, x_{-i}\right)\right]
$$

Group-Strategyproofness

For any location profile \boldsymbol{x}, set of agents S, and location profile \boldsymbol{y}_{S} :

$$
\exists \text { agent } i \in S: \operatorname{cost}\left[x_{i}, F(x)\right] \leq \operatorname{cost}\left[x_{i}, F\left(y_{S}, x_{-S}\right)\right]
$$

Efficiency

$F(x)$ should optimize (or approximate) a given objective function .

- Social Cost : minimize $\sum_{i=1}^{n} \operatorname{cost}\left[x_{i}, F(x)\right]$
- Maximum Cost: minimize $\max \left\{\operatorname{cost}\left[x_{i}, F(x)\right]\right\}$

Desirable Properties of Mechanisms

Strategyproofness

For any location profile x, agent i, and location y :

$$
\operatorname{cost}\left[x_{i}, F(x)\right] \leq \operatorname{cost}\left[x_{i}, F\left(y, x_{-i}\right)\right]
$$

Group-Strategyproofness

For any location profile \boldsymbol{x}, set of agents S, and location profile \boldsymbol{y}_{S} :

$$
\exists \text { agent } i \in S: \operatorname{cost}\left[x_{i}, F(x)\right] \leq \operatorname{cost}\left[x_{i}, F\left(y_{S}, x_{-S}\right)\right]
$$

Efficiency

$F(x)$ should optimize (or approximate) a given objective function .

- Social Cost: minimize $\sum_{i=1}^{n} \operatorname{cost}\left[x_{i}, F(x)\right]$
- Maximum Cost: minimize $\max \left\{\operatorname{cost}\left[x_{i}, F(x)\right]\right\}$
- Minimize p-norm of $\left(\operatorname{cost}\left[x_{1}, F(x)\right], \ldots, \operatorname{cost}\left[x_{n}, F(x)\right]\right)$

1-Facility Location on the Line

1-Facility Location on the Line

The median of $\left(x_{1}, \ldots, x_{n}\right)$ is strategyproof and optimal .

1-Facility Location in Other Metrics

1-Facility Location in a Tree [Schummer Vohra 02]

- Extended medians are the only strategyproof mechanisms.
- Optimal is an extended median, and thus strategyproof.

1-Facility Location in Other Metrics

1-Facility Location in a Tree [Schummer Vohra 02]

- Extended medians are the only strategyproof mechanisms.
- Optimal is an extended median, and thus strategyproof.

1-Facility Location in General Metrics

- Any onto and strategyproof mechanism is a dictatorship [SV02]
- The optimal solution is not strategyproof!

1-Facility Location in Other Metrics

1-Facility Location in a Tree [Schummer Vohra 02]

- Extended medians are the only strategyproof mechanisms.
- Optimal is an extended median, and thus strategyproof.

1-Facility Location in General Metrics

- Any onto and strategyproof mechanism is a dictatorship [SV02]
- The optimal solution is not strategyproof!
- Deterministic dictatorship has cost $\leq(n-1)$ OPT .

1-Facility Location in Other Metrics

1-Facility Location in a Tree [Schummer Vohra 02]

- Extended medians are the only strategyproof mechanisms.
- Optimal is an extended median, and thus strategyproof.

1-Facility Location in General Metrics

- Any onto and strategyproof mechanism is a dictatorship [SV02]
- The optimal solution is not strategyproof!
- Deterministic dictatorship has cost $\leq(n-1)$ OPT .
- Randomized dictatorship has cost ≤ 2 OPT [Alon FPT 10]

2-Facility Location on the Line

2-Facility Location on the Line
 The optimal solution is not strategyproof!

2-Facility Location on the Line

2-Facility Location on the Line
 The optimal solution is not strategyproof!

2-Facility Location on the Line

2-Facility Location on the Line
 The optimal solution is not strategyproof!

2-Facility Location on the Line

2-Facility Location on the Line

The optimal solution is not strategyproof!

Two Extremes Mechanism [Procacc Tennen 09]

- Facilities at the leftmost and at the rightmost location:

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(\min \left\{x_{1}, \ldots, x_{n}\right\}, \max \left\{x_{1}, \ldots, x_{n}\right\}\right)
$$

- Strategyproof and $(n-2)$-approximate .

Approximate Mechanism Design without Money

Approximate Mechanism Design [Procacc Tennen 09]

- Sacrifice optimality for strategyproofness .
- Best approximation ratio by strategyproof mechanisms?
- Variants of k-Facility Location, $k=1,2, \ldots$, among the central problems in this research agenda.

Approximate Mechanism Design without Money

Approximate Mechanism Design [Procacc Tennen 09]

- Sacrifice optimality for strategyproofness .
- Best approximation ratio by strategyproof mechanisms?
- Variants of k-Facility Location, $k=1,2, \ldots$, among the central problems in this research agenda.

2-Facility Location on the Line - Approximation Ratio
Upper Bound Lower Bound
Deterministic $n-2$ [PT09] $n-2$ [FT12]

Approximate Mechanism Design without Money

Approximate Mechanism Design [Procacc Tennen 09]

- Sacrifice optimality for strategyproofness .
- Best approximation ratio by strategyproof mechanisms?
- Variants of k-Facility Location, $k=1,2, \ldots$, among the central problems in this research agenda.

2-Facility Location on the Line - Approximation Ratio
Upper Bound Lower Bound

Deterministic	$n-2$ [PT09]	$n-2$ [FT12]
Randomized	4 [LSWZ10]	1.045 [LWZ09]

Randomized 2-Facility Location [Lusum WangZun 10$]$

Proportional Mechanism

Facilities open at the locations of selected agents . 1st Round: Agent i is selected with probability $1 / n$ 2nd Round: Agent j is selected with probability $\frac{d\left(x_{j}, x_{i}\right)}{\sum_{\ell \in N} d\left(x_{e}, x_{i}\right)}$

Randomized 2-Facility Location [Lusum WangZun 10$]$

Proportional Mechanism

Facilities open at the locations of selected agents . 1st Round: Agent i is selected with probability $1 / n$ 2nd Round: Agent j is selected with probability $\frac{d\left(x_{j}, x_{i}\right)}{\sum_{\ell \in N} d\left(x_{e}, x_{i}\right)}$

Randomized 2-Facility Location [Lusum WangZun 10$]$

Proportional Mechanism

Facilities open at the locations of selected agents .
1 st Round: Agent i is selected with probability $1 / n$
2nd Round: Agent j is selected with probability $\frac{d\left(x_{j}, x_{i}\right)}{\sum_{\ell \in N} d\left(x_{\ell}, x_{i}\right)}$

- Strategyproof and 4-approximate for general metrics.
- Not strategyproof for >2 facilities !

Profile (0 :many, $1: 50,1+10^{5}: 4,101+10^{5}: 1$), $1 \rightarrow 1+10^{5}$.

k-Facility Location for $k \geq 3$

Imposing mechanisms

- Imposing mechanisms may penalize liars by forbidding the agents to connect to certain facilities.
- Agents connect to the facility nearest to reported location.

k-Facility Location for $k \geq 3$

Imposing mechanisms

- Imposing mechanisms may penalize liars by forbidding the agents to connect to certain facilities.
- Agents connect to the facility nearest to reported location.

Differentially Private Imposing Mechanisms [NissSmorod Tennen 10]

- Differentially private mechs are almost strategyproof [McSTal 07].
- Complement them with an imposing gap mechanism that penalizes liars.

k-Facility Location for $k \geq 3$

Imposing mechanisms

- Imposing mechanisms may penalize liars by forbidding the agents to connect to certain facilities.
- Agents connect to the facility nearest to reported location.

Differentially Private Imposing Mechanisms [NissSmorod Tennen 10]

- Differentially private mechs are almost strategyproof [McSTal 07].
- Complement them with an imposing gap mechanism that penalizes liars.
- For k-Facility Location on the line, randomized strategyproof mechanism with cost $\leq \mathrm{OPT}+n^{2 / 3}$.
- OPT may be $O(1)$, running time exponential in k.

Randomized k-Facility Location for $k \geq 3$ [PTramos 10$]$

Winner-Imposing Mechanisms

- Agents with a facility at their reported location connect to it. Otherwise, no restriction whatsoever.

Randomized k-Facility Location for $k \geq 3$ [『r zamos 10$]$

Winner-Imposing Mechanisms

- Agents with a facility at their reported location connect to it. Otherwise, no restriction whatsoever.
- Winner-imposing version of the Proportional Mechanism is strategyproof and $4 k$-approximate in general metrics, for any k.

Randomized k-Facility Location on the Line [FR Tamos 13$]$

Equal-Cost Mechanism

- Optimal maximum cost OPT $=C / 2$.
- Cover all agents with k disjoint intervals of length C.

Randomized k-Facility Location on the Line [:Tramos 1 s]

Equal-Cost Mechanism

- Optimal maximum cost OPT $=C / 2$.
- Cover all agents with k disjoint intervals of length C.
- Place a facility to an end of each interval.

With prob. $1 / 2$, facility at $\mathrm{L}-\mathrm{R}-\mathrm{L}-\mathrm{R}-\ldots$
With prob. $1 / 2$, facility at $\mathrm{R}-\mathrm{L}-\mathrm{R}-\mathrm{L}-\ldots$

Randomized k-Facility Location on the Line [:Tramos 1 s]

Equal-Cost Mechanism

- Optimal maximum cost OPT $=C / 2$.
- Cover all agents with k disjoint intervals of length C.
- Place a facility to an end of each interval.

With prob. $1 / 2$, facility at $\mathrm{L}-\mathrm{R}-\mathrm{L}-\mathrm{R}-\ldots$
With prob. $1 / 2$, facility at $\mathrm{R}-\mathrm{L}-\mathrm{R}-\mathrm{L}-\ldots$

Agents' Cost and Approximation Ratio

- Agent i has expected cost $=\left(C-x_{i}\right) / 2+x_{i} / 2=C / 2=$ OPT.

Randomized k-Facility Location on the Line [:Tramos 1 s]

Equal-Cost Mechanism

- Optimal maximum cost OPT $=C / 2$.
- Cover all agents with k disjoint intervals of length C.
- Place a facility to an end of each interval.

With prob. $1 / 2$, facility at $\mathrm{L}-\mathrm{R}-\mathrm{L}-\mathrm{R}-\ldots$
With prob. $1 / 2$, facility at $\mathrm{R}-\mathrm{L}-\mathrm{R}-\mathrm{L}-\ldots$

Agents' Cost and Approximation Ratio

- Agent i has expected cost $=\left(C-x_{i}\right) / 2+x_{i} / 2=\mathrm{C} / 2=\mathrm{OPT}$.
- Approx. ratio: 2 for the maximum cost, n for the social cost.

■ ■ probability 0.5

Randomized k-Facility Location on the Line [r: Tamos 13$]$

Equal-Cost Mechanism

- Cover all agents with k disjoint intervals of length C.
- Place a facility to an end of each interval.

Strategyproofness

- Agents do not have incentives to lie and increase OPT.
- Let agent i declare y_{i} and decrease OPT to $C^{\prime} / 2<C / 2$.

Randomized k-Facility Location on the Line [r: Tamos 13$]$

Equal-Cost Mechanism

- Cover all agents with k disjoint intervals of length C.
- Place a facility to an end of each interval.

Strategyproofness

- Agents do not have incentives to lie and increase OPT.
- Let agent i declare y_{i} and decrease OPT to $C^{\prime} / 2<C / 2$.
- Distance of x_{i} to nearest C^{\prime}-interval $\geq C-C^{\prime}$.

Randomized k-Facility Location on the Line [FRTamos 13$]$

Equal-Cost Mechanism

- Cover all agents with k disjoint intervals of length C.
- Place a facility to an end of each interval.

Strategyproofness

- Agents do not have incentives to lie and increase OPT.
- Let agent i declare y_{i} and decrease OPT to $C^{\prime} / 2<C / 2$.
- Distance of x_{i} to nearest C^{\prime}-interval $\geq C-C^{\prime}$.
- i^{\prime} s expected cost $\geq\left(C-C^{\prime}\right) / 2+C / 2=C-C^{\prime} / 2>C / 2$

Randomized k-Facility Location on the Line [FTramos 13$]$

Equal-Cost Mechanism

- Cover all agents with k disjoint intervals of length C.
- Place a facility to an end of each interval.

Agents with Concave Costs

Generalized Equal-Cost Mechanism is strategyproof and has the same approximation ratio if agents' cost is a concave function of distance to the nearest facility.

Deterministic 2-Facility Location on the Line

Approximation Ratio $\leq n-2$ [PT09]
Place facilities at the leftmost and at the rightmost location :

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(\min \left\{x_{1}, \ldots, x_{n}\right\}, \max \left\{x_{1}, \ldots, x_{n}\right\}\right)
$$

Deterministic 2-Facility Location on the Line

Approximation Ratio $\leq n-2$ [PT09]

Place facilities at the leftmost and at the rightmost location:

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(\min \left\{x_{1}, \ldots, x_{n}\right\}, \max \left\{x_{1}, \ldots, x_{n}\right\}\right)
$$

Approximation Ratio $>(n-1) / 2$ [LSWZ10]

- For all $a<b<1$, any deterministic strategyproof mechanism F with approximation ratio $<(n-1) / 2$ must have:

$$
F(\underbrace{a, \ldots, a}_{(n-1) / 2}, \underbrace{b, \ldots, b}_{(n-1) / 2}, 1)=(a, b)
$$

- Contradiction for $a=0$ and $b=1 / n^{2}$.

Approximability by Deterministic Mechanisms [ETzam. 12$]$

Deterministic 2-Facility Location on the Line
Nice mechanisms \equiv deterministic strategyproof mechanisms with a bounded approximation.
Niceness objective-independent and facilitates the characterization!

Deterministic 2-Facility Location on the Line
Nice mechanisms \equiv deterministic strategyproof mechanisms with a bounded approximation.
Niceness objective-independent and facilitates the characterization!
Any nice mechanism F for $n \geq 5$ agents:

- Either $F(x)=(\min x, \max x)$ for all x (Two Extremes).
- Or admits unique dictator j, i.e., $x_{j} \in F(x)$ for all x.

Approximability by Deterministic Mechanisms [ETzam. 12$]$

Deterministic 2-Facility Location on the Line
Nice mechanisms \equiv deterministic strategyproof mechanisms with a bounded approximation.
Niceness objective-independent and facilitates the characterization!
Any nice mechanism F for $n \geq 5$ agents:

- Either $F(x)=(\min x, \max x)$ for all x (Two Extremes).
- Or admits unique dictator j, i.e., $x_{j} \in F(x)$ for all \boldsymbol{x}.

Dictatorial Mechanism with Dictator j

- Consider distances $d_{l}=x_{j}-\min x$ and $d_{r}=\max x-x_{j}$.
- Place the first facility at x_{j} and the second at $x_{j}-\max \left\{d_{l}, 2 d_{r}\right\}$, if $d_{l}>d_{r}$, and at $x_{j}+\max \left\{2 d_{l}, d_{r}\right\}$, otherwise.
- Strategyproof and $(n-1)$-approximate.

Consequences

- Two Extremes is the only anonymous nice mechanism for allocating 2 facilities to $n \geq 5$ agents on the line.
- The approximation ratio for 2-Facility Location on the line by deterministic strategyproof mechanisms is $n-2$.

Approximability by Deterministic Mechanisms [ETzam. 10$]$

Consequences

- Two Extremes is the only anonymous nice mechanism for allocating 2 facilities to $n \geq 5$ agents on the line.
- The approximation ratio for 2-Facility Location on the line by deterministic strategyproof mechanisms is $n-2$.

Deterministic k-Facility Location, for all $k \geq 3$

There are no anonymous nice mechanisms for k-Facility Location for all $k \geq 3$ (even on the line and for $n=k+1$).

Approximability by Deterministic Mechanisms [ETzam. 10$]$

Consequences

- Two Extremes is the only anonymous nice mechanism for allocating 2 facilities to $n \geq 5$ agents on the line.
- The approximation ratio for 2-Facility Location on the line by deterministic strategyproof mechanisms is $n-2$.

Deterministic k-Facility Location, for all $k \geq 3$

There are no anonymous nice mechanisms for k-Facility Location for all $k \geq 3$ (even on the line and for $n=k+1$).

Deterministic 2-Facility Location in General Metrics

There are no nice mechanisms for 2-Facility Location in metrics more general than the line and the circle (even for 3 agents in a star).

Consistent Allocation for Well-Separated Instances

Well-Separated Instances

- Let F be a nice mechanism for k-FL with approximation ratio ρ.
- ($k+1$)-agent instance \boldsymbol{x} is $\left(i_{1}|\cdots| i_{k-1} \mid i_{k}, i_{k+1}\right)$-well-separated if $x_{i_{1}}<\cdots<x_{i_{k+1}}$ and $\rho\left(x_{i_{k+1}}-x_{i_{k}}\right)<\min _{2 \leq \ell \leq k}\left\{x_{i_{\ell}}-x_{i_{\ell-1}}\right\}$.
(1|2|3,4)-well-separated instance

Consistent Allocation for Well-Separated Instances

The Nearby Agents Slide on the Right

- Let \boldsymbol{x} be $\left(i_{1}|\cdots| i_{k-1} \mid i_{k}, i_{k+1}\right)$-well-separated with $F_{k}(\boldsymbol{x})=x_{i_{k}}$.
- Then, for all $\left(i_{1}|\cdots| i_{k-1} \mid i_{k}, i_{k+1}\right)$-well-separated $\boldsymbol{x}^{\prime}=\left(\boldsymbol{x}_{-\left\{i_{k}, i_{k+1}\right\}}, x_{i_{k}}^{\prime}, x_{i_{k+1}}^{\prime}\right)$ with $x_{i_{k}} \leq x_{i_{k}}^{\prime}, F_{k}\left(x^{\prime}\right)=x_{i_{k}}^{\prime}$.

Consistent Allocation for Well-Separated Instances

The Nearby Agents Slide on the Right

- Let \boldsymbol{x} be $\left(i_{1}|\cdots| i_{k-1} \mid i_{k}, i_{k+1}\right)$-well-separated with $F_{k}(\boldsymbol{x})=x_{i_{k}}$.
- Then, for all $\left(i_{1}|\cdots| i_{k-1} \mid i_{k}, i_{k+1}\right)$-well-separated $\boldsymbol{x}^{\prime}=\left(\boldsymbol{x}_{-\left\{i_{k}, i_{k+1}\right\}}, x_{i_{k}}^{\prime}, x_{i_{k+1}}^{\prime}\right)$ with $x_{i_{k}} \leq x_{i_{k}}^{\prime}, F_{k}\left(x^{\prime}\right)=x_{i_{k}}^{\prime}$.

The Nearby Agents Slide on the Left

- Let \boldsymbol{x} be $\left(i_{1}|\cdots| i_{k-1} \mid i_{k}, i_{k+1}\right)$-well-separated with $F_{k}(x)=x_{i_{k+1}}$.
- Then, for all $\left(i_{1}|\cdots| i_{k-1} \mid i_{k}, i_{k+1}\right)$-well-separated $x^{\prime}=\left(\boldsymbol{x}_{-\left\{i_{k}, i_{k+1}\right\}}, x_{i_{k}}^{\prime}, x_{i_{k+1}}^{\prime}\right)$ with $x_{i_{k+1}}^{\prime} \leq x_{i_{k+1}}, F_{k}\left(x^{\prime}\right)=x_{i_{k+1}}^{\prime}$.

$$
k=3
$$

Inexistence of Anonymous Nice Mechanisms for $k \geq 3$

Theorem
There are no anonymous nice mechanisms for k-Facility Location for all $k \geq 3$ (even on the line and for $n=k+1$).

Inexistence of Anonymous Nice Mechanisms for $k \geq 3$

Theorem

There are no anonymous nice mechanisms for k-Facility Location for all $k \geq 3$ (even on the line and for $n=k+1$).

Proof Sketch for $k=3$ and $n=4$
\square

Inexistence of Anonymous Nice Mechanisms for $k \geq 3$

Theorem

There are no anonymous nice mechanisms for k-Facility Location for all $k \geq 3$ (even on the line and for $n=k+1$).

Proof Sketch for $k=3$ and $n=4$

- Image set $I_{4}\left(x_{-4}\right)=\left\{a: F\left(x_{-4}, y\right)=a\right.$ for some location $\left.y\right\}$ Set of locations where a facility can be forced by agent 4 in x_{-4}.
- F strategyproof iff all agents get the best in their image set.

Inexistence of Anonymous Nice Mechanisms for $k \geq 3$

Theorem

There are no anonymous nice mechanisms for k-Facility Location for all $k \geq 3$ (even on the line and for $n=k+1$).

Proof Sketch for $k=3$ and $n=4$

- Image set $I_{4}\left(x_{-4}\right)=\left\{a: F\left(x_{-4}, y\right)=a\right.$ for some location $\left.y\right\}$ Set of locations where a facility can be forced by agent 4 in x_{-4}.
- F strategyproof iff all agents get the best in their image set.

Inexistence of Anonymous Nice Mechanisms for $k \geq 3$

Theorem

There are no anonymous nice mechanisms for k-Facility Location for all $k \geq 3$ (even on the line and for $n=k+1$).

Proof Sketch for $k=3$ and $n=4$

- Image set $I_{4}\left(x_{-4}\right)=\left\{a: F\left(x_{-4}, y\right)=a\right.$ for some location $\left.y\right\}$ Set of locations where a facility can be forced by agent 4 in x_{-4}.
- F strategyproof iff all agents get the best in their image set.

Inexistence of Anonymous Nice Mechanisms for $k \geq 3$

Theorem

There are no anonymous nice mechanisms for k-Facility Location for all $k \geq 3$ (even on the line and for $n=k+1$).

Proof Sketch for $k=3$ and $n=4$

- Image set $I_{4}\left(x_{-4}\right)=\left\{a: F\left(x_{-4}, y\right)=a\right.$ for some location $\left.y\right\}$ Set of locations where a facility can be forced by agent 4 in x_{-4}.
- F strategyproof iff all agents get the best in their image set.

Inexistence of Anonymous Nice Mechanisms for $k \geq 3$

Theorem

There are no anonymous nice mechanisms for k-Facility Location for all $k \geq 3$ (even on the line and for $n=k+1$).

Proof Sketch for $k=3$ and $n=4$

- Image set $I_{4}\left(x_{-4}\right)=\left\{a: F\left(x_{-4}, y\right)=a\right.$ for some location $\left.y\right\}$ Set of locations where a facility can be forced by agent 4 in x_{-4}.
- F strategyproof iff all agents get the best in their image set.
- Contradicts bounded approximation ratio of F.

Nice Mechanisms for 2-Facility Location on the Line

Characterization for 3-Agent Instances
Any nice mechanism F for $n=3$ agents:

- $\exists \leq 2$ permutations π_{1}, π_{2} with $\pi_{1}(2)=\pi_{2}(2)$: for all \boldsymbol{x} compatible with π_{1} or π_{2}, med $x \in F(x)$ (partial dictator).
- For any other π and x compatible with $\pi, F(x)=(\min x, \max x)$.

Nice Mechanisms for 2-Facility Location on the Line

Characterization for 3-Agent Instances

Any nice mechanism F for $n=3$ agents:

- $\exists \leq 2$ permutations π_{1}, π_{2} with $\pi_{1}(2)=\pi_{2}(2)$: for all x compatible with π_{1} or π_{2}, med $x \in F(x)$ (partial dictator).
- For any other π and x compatible with $\pi, F(x)=(\min x, \max x)$.

Characterization for 3-Location Instances

Any nice mechanism F for $n \geq 5$ agents on 3 locations:

- Either has $F(x)=(\min x, \max x)$ for all x.
- Or admits a unique dictator j, i.e., $x_{j} \in F(x)$ for all x.

Nice Mechanisms for 2-Facility Location on the Line

Characterization for 3-Agent Instances

Any nice mechanism F for $n=3$ agents:

- $\exists \leq 2$ permutations π_{1}, π_{2} with $\pi_{1}(2)=\pi_{2}(2)$: for all x compatible with π_{1} or π_{2}, med $x \in F(x)$ (partial dictator).
- For any other π and x compatible with $\pi, F(x)=(\min x, \max x)$.

Characterization for 3-Location Instances

Any nice mechanism F for $n \geq 5$ agents on 3 locations:

- Either has $F(x)=(\min x, \max x)$ for all x.
- Or admits a unique dictator j, i.e., $x_{j} \in F(x)$ for all x.

General Characterization

Any nice mechanism F for $n \geq 5$ agents:

- Either has $F(x)=(\min x, \max x)$ for all x.
- Or admits a unique dictator j, i.e., $x_{j} \in F(x)$ for all x.

Well-Separated Instances

Allocation for Fixed Permutation of Nearby Agents

For any agent i and any loc. a, \exists unique threshold $p \in[a,+\infty) \cup\{\uparrow\}$: $\forall(i \mid j, k)$-well-separated x with $x_{i}=a$,

$$
F_{2}(\boldsymbol{x})=\operatorname{med}\left(p, x_{j}, x_{k}\right)
$$

Well-Separated Instances

Allocation for Fixed Permutation of Nearby Agents

For any agent i and any loc. a, \exists unique threshold $p \in[a,+\infty) \cup\{\uparrow\}$: $\forall(i \mid j, k)$-well-separated x with $x_{i}=a$,

$$
F_{2}(\boldsymbol{x})=\operatorname{med}\left(p, x_{j}, x_{k}\right)
$$

Allocation for Nearby Agents

- $\forall(i \mid j, k)$-w.s. \boldsymbol{x} with $x_{i}=a$: threshold p_{1} s.t. $F_{2}(x)=\operatorname{med}\left(p_{1}, x_{j}, x_{k}\right)$
- $\forall(i \mid k, j)$-w.s. \boldsymbol{x} with $x_{i}=a$: threshold p_{2} s.t. $F_{2}(x)=\operatorname{med}\left(p_{2}, x_{j}, x_{k}\right)$

Well-Separated Instances

Allocation for Fixed Permutation of Nearby Agents

For any agent i and any loc. a, \exists unique threshold $p \in[a,+\infty) \cup\{\uparrow\}$: $\forall(i \mid j, k)$-well-separated x with $x_{i}=a$,

$$
F_{2}(\boldsymbol{x})=\operatorname{med}\left(p, x_{j}, x_{k}\right)
$$

Allocation for Nearby Agents

- $\forall(i \mid j, k)$-w.s. \boldsymbol{x} with $x_{i}=a$: threshold p_{1} s.t. $F_{2}(\boldsymbol{x})=\operatorname{med}\left(p_{1}, x_{j}, x_{k}\right)$
- $\forall(i \mid k, j)$-w.s. \boldsymbol{x} with $x_{i}=a$: threshold p_{2} s.t. $F_{2}(x)=\operatorname{med}\left(p_{2}, x_{j}, x_{k}\right)$
- $\forall i$-left-w.s. x with $x_{i}=a$: the rightmost facility by gmvs on x_{-i} with $\alpha_{\emptyset}=a, \alpha_{\{k\}}=p_{1}, \alpha_{\{j\}}=p_{2}, \alpha_{\{j, k\}}=\uparrow$:

$$
F_{2}(x)=\max \left\{\min \left\{x_{j}, p_{2}\right\}, \min \left\{x_{k}, p_{1}\right\}\right\}
$$

Well-Separated Instances

Allocation for Fixed Permutation of Nearby Agents

For any agent i and any loc. a, \exists unique threshold $p \in[a,+\infty) \cup\{\uparrow\}$: $\forall(i \mid j, k)$-well-separated x with $x_{i}=a$,

$$
F_{2}(\boldsymbol{x})=\operatorname{med}\left(p, x_{j}, x_{k}\right)
$$

Allocation for Nearby Agents

- $\forall(i \mid j, k)$-w.s. \boldsymbol{x} with $x_{i}=a$: threshold p_{1} s.t. $F_{2}(\boldsymbol{x})=\operatorname{med}\left(p_{1}, x_{j}, x_{k}\right)$
- $\forall(i \mid k, j)$-w.s. \boldsymbol{x} with $x_{i}=a$: threshold p_{2} s.t. $F_{2}(x)=\operatorname{med}\left(p_{2}, x_{j}, x_{k}\right)$
- $\forall i$-left-w.s. x with $x_{i}=a$: the rightmost facility by gmvs on x_{-i} with $\alpha_{\emptyset}=a, \alpha_{\{k\}}=p_{1}, \alpha_{\{j\}}=p_{2}, \alpha_{\{j, k\}}=\uparrow$:

$$
F_{2}(x)=\max \left\{\min \left\{x_{j}, p_{2}\right\}, \min \left\{x_{k}, p_{1}\right\}\right\}
$$

- Due to bounded approximation ratio, either $p_{1}=\uparrow$ or $p_{2}=\uparrow$.

Well-Separated Instances

Allocation for Fixed Permutation of Nearby Agents

For any agent i and any loc. a, \exists unique threshold $p \in[a,+\infty) \cup\{\uparrow\}$: $\forall(i \mid j, k)$-well-separated x with $x_{i}=a$,

$$
F_{2}(\boldsymbol{x})=\operatorname{med}\left(p, x_{j}, x_{k}\right)
$$

Allocation for Nearby Agents

- $\forall(i \mid j, k)$-w.s. \boldsymbol{x} with $x_{i}=a$: threshold p_{1} s.t. $F_{2}(\boldsymbol{x})=\operatorname{med}\left(p_{1}, x_{j}, x_{k}\right)$
- $\forall(i \mid k, j)$-w.s. \boldsymbol{x} with $x_{i}=a$: threshold p_{2} s.t. $F_{2}(x)=\operatorname{med}\left(p_{2}, x_{j}, x_{k}\right)$
- $\forall i$-left-w.s. x with $x_{i}=a$: the rightmost facility by gmvs on x_{-i} with $\alpha_{\emptyset}=a, \alpha_{\{k\}}=p_{1}, \alpha_{\{j\}}=p_{2}, \alpha_{\{j, k\}}=\uparrow$:

$$
F_{2}(x)=\max \left\{\min \left\{x_{j}, p_{2}\right\}, \min \left\{x_{k}, p_{1}\right\}\right\}
$$

- Due to bounded approximation ratio, either $p_{1}=\uparrow$ or $p_{2}=\uparrow$.
- If $p_{2}=\uparrow, j$ is the preferred agent of (i, a), and threshold $p=p_{1}$:

$$
F_{2}(x)=\max \left\{x_{j}, \min \left\{x_{k}, p\right\}\right\}
$$

Well-Separated Instances

Allocation for Fixed Permutation of Nearby Agents

For any agent i and any loc. a, \exists unique threshold $p \in[a,+\infty) \cup\{\uparrow\}$: $\forall(i \mid j, k)$-well-separated x with $x_{i}=a$,

$$
F_{2}(\boldsymbol{x})=\operatorname{med}\left(p, x_{j}, x_{k}\right)
$$

Allocation for Nearby Agents

- $\forall(i \mid j, k)$-w.s. \boldsymbol{x} with $x_{i}=a$: threshold p_{1} s.t. $F_{2}(\boldsymbol{x})=\operatorname{med}\left(p_{1}, x_{j}, x_{k}\right)$
- $\forall(i \mid k, j)$-w.s. \boldsymbol{x} with $x_{i}=a$: threshold p_{2} s.t. $F_{2}(x)=\operatorname{med}\left(p_{2}, x_{j}, x_{k}\right)$
- $\forall i$-left-w.s. x with $x_{i}=a$: the rightmost facility by gmvs on x_{-i} with $\alpha_{\emptyset}=a, \alpha_{\{k\}}=p_{1}, \alpha_{\{j\}}=p_{2}, \alpha_{\{j, k\}}=\uparrow$:

$$
F_{2}(x)=\max \left\{\min \left\{x_{j}, p_{2}\right\}, \min \left\{x_{k}, p_{1}\right\}\right\}
$$

- Due to bounded approximation ratio, either $p_{1}=\uparrow$ or $p_{2}=\uparrow$.
- If $p_{2}=\uparrow, j$ is the preferred agent of (i, a), and threshold $p=p_{1}$:

$$
F_{2}(x)=\max \left\{x_{j}, \min \left\{x_{k}, p\right\}\right\}
$$

- If $p=a$, then $F_{2}(x)=\max \left\{x_{j}, x_{k}\right\}$. If $p=\uparrow$, then $F_{2}(\boldsymbol{x})=x_{j}$.

Well-Separated Instances

Allocation for Nearby Agents

For any agent i and any location a, \exists unique threshold $p \in[a,+\infty) \cup\{\uparrow\}$ and preferred agent $\ell \neq i$: $\forall i$-left-well-separated x with $x_{i}=a$, $F_{2}(x)= \begin{cases}x_{\ell} & \text { if } x_{\ell} \geq p \\ \operatorname{med}\left(p, x_{j}, x_{k}\right) & \text { otherwise }\end{cases}$

Extension to General Instances

The Range of the Threshold

The Threshold Can Only Take Two Extreme Values
For any agent i and location a :

- The left threshold of (i, a) is either a or \uparrow
- The right threshold of (i, a) is either a or \downarrow

The Range of the Threshold

The Threshold Can Only Take Two Extreme Values

For any agent i and location a :

- The left threshold of (i, a) is either a or \uparrow
- The right threshold of (i, a) is either a or \downarrow

Nice Mechanisms for 2-Facility Location on the Line

Characterization for 3-Agent Instances
Any nice mechanism F for $n=3$ agents:

- $\exists \leq 2$ permutations π_{1}, π_{2} with $\pi_{1}(2)=\pi_{2}(2)$: for all \boldsymbol{x} compatible with π_{1} or π_{2}, med $x \in F(x)$ (partial dictator).
- For any other π and x compatible with $\pi, F(x)=(\min x, \max x)$.

Nice Mechanisms for 2-Facility Location on the Line

Characterization for 3-Agent Instances

Any nice mechanism F for $n=3$ agents:

- $\exists \leq 2$ permutations π_{1}, π_{2} with $\pi_{1}(2)=\pi_{2}(2)$: for all x compatible with π_{1} or π_{2}, med $x \in F(x)$ (partial dictator).
- For any other π and x compatible with $\pi, F(x)=(\min x, \max x)$.

Characterization for 3-Location Instances

Any nice mechanism F for $n \geq 5$ agents on 3 locations:

- Either has $F(x)=(\min x, \max x)$ for all x.
- Or admits a unique dictator j, i.e., $x_{j} \in F(x)$ for all x.

Nice Mechanisms for 2-Facility Location on the Line

Characterization for 3-Agent Instances

Any nice mechanism F for $n=3$ agents:

- $\exists \leq 2$ permutations π_{1}, π_{2} with $\pi_{1}(2)=\pi_{2}(2)$: for all x compatible with π_{1} or π_{2}, med $x \in F(x)$ (partial dictator).
- For any other π and x compatible with $\pi, F(x)=(\min x, \max x)$.

Characterization for 3-Location Instances

Any nice mechanism F for $n \geq 5$ agents on 3 locations:

- Either has $F(x)=(\min x, \max x)$ for all x.
- Or admits a unique dictator j , i.e., $x_{j} \in F(x)$ for all x.

General Characterization

Any nice mechanism F for $n \geq 5$ agents:

- Either has $F(x)=(\min x, \max x)$ for all x.
- Or admits a unique dictator j, i.e., $x_{j} \in F(x)$ for all x.

Research Directions

Lower Bounds for Randomized Mechanisms

- Lower bound of 2 for mechanisms restricted to agents' locations.
- Exploit well-separated instances and extend the lower bound to unrestricted randomized mechanisms.

Research Directions

Lower Bounds for Randomized Mechanisms

- Lower bound of 2 for mechanisms restricted to agents' locations.
- Exploit well-separated instances and extend the lower bound to unrestricted randomized mechanisms.

The Power of Verification in Mechanism Design without Money

- (Implicit or explicit) verification restricts agents' declarations.

Research Directions

Lower Bounds for Randomized Mechanisms

- Lower bound of 2 for mechanisms restricted to agents' locations.
- Exploit well-separated instances and extend the lower bound to unrestricted randomized mechanisms.

The Power of Verification in Mechanism Design without Money

- (Implicit or explicit) verification restricts agents' declarations.
- ε-verification : agent i at x_{i} can only declare anything in $\left[x_{i}-\varepsilon, x_{i}+\varepsilon\right.$], [Carag. Elk. Szeg. Yu 12] [Archer Klein. 08]

Research Directions

Lower Bounds for Randomized Mechanisms

- Lower bound of 2 for mechanisms restricted to agents' locations.
- Exploit well-separated instances and extend the lower bound to unrestricted randomized mechanisms.

The Power of Verification in Mechanism Design without Money

- (Implicit or explicit) verification restricts agents' declarations.
- ε-verification : agent i at x_{i} can only declare anything in [$x_{i}-\varepsilon, x_{i}+\varepsilon$], [Carag. Elk. Szeg. Yu 12] [Archer Klein. 08]
- Winner-imposing: lies that increase mechanism's cost cause a (proportional) penalty to the agent [F. Tzamos 10] [Koutsoupias 11]

Research Directions

Lower Bounds for Randomized Mechanisms

- Lower bound of 2 for mechanisms restricted to agents' locations.
- Exploit well-separated instances and extend the lower bound to unrestricted randomized mechanisms.

The Power of Verification in Mechanism Design without Money

- (Implicit or explicit) verification restricts agents' declarations.
- ε-verification : agent i at x_{i} can only declare anything in $\left[x_{i}-\varepsilon, x_{i}+\varepsilon\right.$] , [Carag. Elk. Szeg. Yu 12] [Archer Klein. 08]
- Winner-imposing: lies that increase mechanism's cost cause a (proportional) penalty to the agent [F. Tzamos 10] [Koutsoupias 11]
- Non-symmetric verification: conditions under which the mechanism gets some advantage.

Research Directions

Non-Symmetric Verification to Particular Domains

- Combinatorial Auctions without money, assuming that bidders do not overbid on winning sets [F. Krysta Ventre 13]
- k-Combinatorial Public Project without overbidding on winning (sub)sets.

Research Directions

Non-Symmetric Verification to Particular Domains

- Combinatorial Auctions without money, assuming that bidders do not overbid on winning sets [F. Krysta Ventre 13]
- k-Combinatorial Public Project without overbidding on winning (sub)sets.

A Priori Verification of Few Agents

- What if declarations of few agents can be verified before the mechanism is applied.
- $O(1)$-approximation achievable for k-Facility Location by verifying the locations of $O(k)$ selected agents?
- Minimum \#agents verified to achieve a given approximation ratio for a particular problem.

Research Directions

Non-Symmetric Verification to Particular Domains

- Combinatorial Auctions without money, assuming that bidders do not overbid on winning sets [F. Krysta Ventre 13]
- k-Combinatorial Public Project without overbidding on winning (sub)sets.

A Priori Verification of Few Agents

- What if declarations of few agents can be verified before the mechanism is applied.
- $O(1)$-approximation achievable for k-Facility Location by verifying the locations of $O(k)$ selected agents?
- Minimum \#agents verified to achieve a given approximation ratio for a particular problem.
- Choice of agents, implementation, what if an agent caught lying?

