Mechanism Design without Money

Dimitris Fotakis

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING NATIONAL TECHNICAL UNIVERSITY OF ATHENS, GREECE

Viewpoint shaped through joint work with Christos Tzamos

Dimitris Fotakis Mechanism Design without Money

Social Choice

Setting

- Set *A* of possible **alternatives** (candidates).
- Set $N = \{1, ..., n\}$ of **agents** (voters).
- \forall agent *i* has a (private) **linear order** $\succ_i \in L$ over alternatives *A*.

Social choice function (or **mechanism**) $F : L^n \to A$ mapping the agents' preferences to an alternative.

Social Choice

Setting

- Set *A* of possible **alternatives** (candidates).
- Set $N = \{1, \ldots, n\}$ of **agents** (voters).
- \forall agent *i* has a (private) **linear order** $\succ_i \in L$ over alternatives *A*.

Social choice function (or **mechanism**) $F : L^n \to A$ mapping the agents' preferences to an alternative.

Desirable Properties of Social Choice Functions

- Onto: Range is A.
- Unanimous: If *a* is the top alternative in all \succ_1, \ldots, \succ_n , then

 $F(\succ_1,\ldots,\succ_n)=a$

• Not dictatorial: For each agent i, $\exists \succ_1, \ldots, \succ_n$:

 $F(\succ_1,\ldots,\succ_n) \neq \text{agent's } i \text{ top alternative}$

Social Choice

Setting

- Set *A* of possible **alternatives** (candidates).
- Set $N = \{1, \ldots, n\}$ of agents (voters).
- \forall agent *i* has a (private) **linear order** $\succ_i \in L$ over alternatives *A*.

Social choice function (or **mechanism**) $F : L^n \to A$ mapping the agents' preferences to an alternative.

Desirable Properties of Social Choice Functions

- Onto: Range is A.
- Unanimous : If *a* is the top alternative in all \succ_1, \ldots, \succ_n , then

 $F(\succ_1,\ldots,\succ_n)=a$

• Not dictatorial: For each agent i, $\exists \succ_1, \ldots, \succ_n$:

 $F(\succ_1,\ldots,\succ_n) \neq \text{agent's } i \text{ top alternative}$

• **Strategyproof** or **truthful** : $\forall \succ_1, \ldots, \succ_n, \forall \text{ agent } i, \forall \succ'_i, \forall i \in \mathbb{N}$

 $F(\succ_1,\ldots,\succ_i,\ldots,\succ_n) \succ_i F(\succ_1,\ldots,\succ_i,\ldots,\succ_n)$

Gibbard-Satterthwaite Theorem (mid 70's)

Any **strategyproof** and **onto** social choice function on **more than 2** alternatives is **dictatorial**.

Gibbard-Satterthwaite Theorem (mid 70's)

Any **strategyproof** and **onto** social choice function on **more than 2** alternatives is **dictatorial**.

Escape Routes

- Randomization
- Monetary payments
- Voting systems computationally hard to manipulate.

Gibbard-Satterthwaite Theorem (mid 70's)

Any **strategyproof** and **onto** social choice function on **more than 2** alternatives is **dictatorial**.

Escape Routes

- Randomization
- Monetary payments
- Voting systems **computationally hard** to manipulate.
- Restricted domain of preferences Approximation

Single Peaked Preferences

- One dimensional ordering of alternatives, e.g. A = [0, 1]
- Each agent *i* has a **single peak** $x_i^* \in A$ such that for all $a, b \in A$:

$$b < a \le x_i^* \implies a \succ_i b$$

 $x_i^* \ge a > b \implies a \succ_i b$

Single Peaked Preferences

- One dimensional ordering of alternatives, e.g. A = [0, 1]
- Each agent *i* has a **single peak** $x_i^* \in A$ such that for all $a, b \in A$:

$$b < a \le x_i^* \implies a \succ_i b$$
$$x_i^* > a > b \implies a \succ_i b$$

Median Voter Scheme [Moulin 80], [Sprum 91], [Barb Jackson 94]

A social choice function *F* on a single peaked preference domain is **strategyproof**, **onto**, and **anonymous** iff there exist $y_1, \ldots, y_{n-1} \in A$ such that for all (x_1^*, \ldots, x_n^*) ,

$$F(x_1^*,...,x_n^*) = median(x_1^*,...,x_n^*,y_1,...,y_{n-1})$$

Select a Single Location on the Line

The median of (x_1, \ldots, x_n) is strategyproof (and Condorcet winner).

Select a Single Location on the Line

The median of (x_1, \ldots, x_n) is strategyproof (and Condorcet winner).

Select a Single Location on the Line

The median of (x_1, \ldots, x_n) is strategyproof (and Condorcet winner).

Generalized Median Voter Scheme [Moulin 80]

A social choice function *F* on single peaked preference domain [0, 1] is **strategyproof** and **onto** iff it is a **generalized median voter scheme** (GMVS), i.e., there exist 2^n thresholds $\{\alpha_s\}_{s \in \mathbb{N}}$ in [0, 1] such that:

- $\alpha_{\emptyset} = 0$ and $\alpha_N = 1$ (onto condition),
- $S \subseteq T \subseteq N$ implies $\alpha_S \leq \alpha_T$, and
- for all $(x_1^*, ..., x_n^*)$, $F(x_1^*, ..., x_n^*) = \max_{S \subset N} \min\{\alpha_S, x_i^* : i \in S\}$

k-Facility Location Game

Strategic Agents in a Metric Space

- Set of agents $N = \{1, \ldots, n\}$
- Each agent *i* **wants** a facility at *x_i*. Location *x_i* is agent *i*'s **private information**.

k-Facility Location Game

Strategic Agents in a Metric Space

- Set of agents $N = \{1, \ldots, n\}$
- Each agent *i* wants a facility at *x_i*. Location *x_i* is agent *i*'s **private information**.
- Each agent *i* **reports** that she wants a facility at *y_i*. Location *y_i* may be **different** from *x_i*.

Mechanisms and Agents' Preferences

(Randomized) Mechanism

A social choice **function** *F* that maps a location profile $y = (y_1, ..., y_n)$ to a (probability distribution over) set(s) of *k* **facilities**.

Mechanisms and Agents' Preferences

(Randomized) Mechanism

A social choice **function** *F* that maps a location profile $y = (y_1, ..., y_n)$ to a (probability distribution over) set(s) of *k* **facilities**.

Connection Cost

(Expected) distance of agent *i*'s **true location** to the **nearest** facility:

 $cost[x_i, F(\boldsymbol{y})] = d(x_i, F(\boldsymbol{y}))$

Strategyproofness

For any location profile x, agent i, and location y: $cost[x_i, F(x)] \le cost[x_i, F(y, x_{-i})]$

Strategyproofness

For any location profile x, agent i, and location y: $cost[x_i, F(x)] \le cost[x_i, F(y, x_{-i})]$

Group-Strategyproofness

For any location profile x, set of agents S, and location profile y_S : $\exists \text{ agent } i \in S : \text{cost}[x_i, F(x)] \le \text{cost}[x_i, F(y_S, x_{-S})]$

Strategyproofness

For any location profile x, agent i, and location y: $cost[x_i, F(x)] \le cost[x_i, F(y, x_{-i})]$

Group-Strategyproofness

For any location profile x, set of agents S, and location profile y_S : $\exists \text{ agent } i \in S : \text{cost}[x_i, F(x)] \le \text{cost}[x_i, F(y_S, x_{-S})]$

Efficiency

F(x) should optimize (or approximate) a given **objective function**.

- Social Cost: minimize $\sum_{i=1}^{n} cost[x_i, F(x)]$
- Maximum Cost: minimize $\max{cost[x_i, F(x)]}$

Strategyproofness

For any location profile x, agent i, and location y: $cost[x_i, F(x)] \le cost[x_i, F(y, x_{-i})]$

Group-Strategyproofness

For any location profile x, set of agents S, and location profile y_S : $\exists \text{ agent } i \in S : \text{cost}[x_i, F(x)] \le \text{cost}[x_i, F(y_S, x_{-S})]$

Efficiency

F(x) should optimize (or approximate) a given **objective function**.

- Social Cost: minimize $\sum_{i=1}^{n} cost[x_i, F(x)]$
- Maximum Cost: minimize max{cost[*x_i*, *F*(*x*)]}
- Minimize *p*-norm of $(cost[x_1, F(\mathbf{x})], \dots, cost[x_n, F(\mathbf{x})])$

1-Facility Location on the Line

The median of (x_1, \ldots, x_n) is strategyproof and optimal.

1-Facility Location in a Tree [Schummer Vohra 02]

- Extended medians are the only strategyproof mechanisms.
- Optimal is an extended median, and thus strategyproof.

1-Facility Location in a Tree [Schummer Vohra 02]

- Extended medians are the only strategyproof mechanisms.
- Optimal is an extended median, and thus strategyproof.

1-Facility Location in General Metrics

- Any onto and strategyproof mechanism is a dictatorship [SV02]
- The optimal solution is not strategyproof !

1-Facility Location in a Tree [Schummer Vohra 02]

- Extended medians are the only strategyproof mechanisms.
- Optimal is an extended median, and thus strategyproof.

1-Facility Location in General Metrics

- Any onto and strategyproof mechanism is a dictatorship [SV02]
- The optimal solution is not strategyproof!
- Deterministic **dictatorship** has $cost \le (n-1)OPT$.

1-Facility Location in a Tree [Schummer Vohra 02]

- Extended medians are the only strategyproof mechanisms.
- Optimal is an extended median, and thus strategyproof.

1-Facility Location in General Metrics

- Any onto and strategyproof mechanism is a dictatorship [SV02]
- The optimal solution is **not strategyproof**!
- Deterministic **dictatorship** has $cost \le (n-1)OPT$.
- Randomized dictatorship has $cost \le 2 OPT$ [Alon FPT 10]

2-Facility Location on the Line

The optimal solution is not strategyproof !

2-Facility Location on the Line

The optimal solution is not strategyproof !

2-Facility Location on the Line

The optimal solution is not strategyproof !

The optimal solution is not strategyproof !

Two Extremes Mechanism [Procacc Tennen 09]

- Facilities at the **leftmost** and at the **rightmost** location :
 - $F(x_1,\ldots,x_n)=(\min\{x_1,\ldots,x_n\},\max\{x_1,\ldots,x_n\})$
- Strategyproof and (n-2)-approximate.

Approximate Mechanism Design without Money

Approximate Mechanism Design [Procacc Tennen 09]

- Sacrifice optimality for strategyproofness.
- Best approximation ratio by strategyproof mechanisms?
- Variants of *k*-Facility Location, *k* = 1, 2, . . ., among the **central** problems in this research agenda.

Approximate Mechanism Design without Money

Approximate Mechanism Design [Procacc Tennen 09]

- Sacrifice optimality for strategyproofness.
- Best approximation ratio by strategyproof mechanisms?
- Variants of *k*-Facility Location, *k* = 1, 2, . . ., among the **central** problems in this research agenda.

2-Facility Location on the Line – Approximation Ratio

Upper BoundLower BoundDeterministicn-2 [PT09]n-2 [FT12]

Approximate Mechanism Design without Money

Approximate Mechanism Design [Procacc Tennen 09]

- Sacrifice optimality for strategyproofness.
- Best approximation ratio by strategyproof mechanisms?
- Variants of *k*-Facility Location, *k* = 1, 2, . . ., among the **central** problems in this research agenda.

2-Facility Location on the Line – Approximation Ratio

	Upper Bound	Lower Bound
Deterministic	<i>n</i> – 2 [PT09]	n-2 [FT12]
Randomized	4 [LSWZ10]	1.045 [LWZ09]

Randomized 2-Facility Location [Lu Sun Wang Zhu 10]

Proportional Mechanism

Facilities open at the locations of selected agents.

1st Round: Agent *i* is selected with probability 1/n

2nd Round: Agent *j* is selected with probability $\frac{d(x_i, x_i)}{\sum_{x \in \mathcal{X}} d(x_i, x_i)}$

Randomized 2-Facility Location [Lu Sun Wang Zhu 10]

Proportional Mechanism

Facilities open at the locations of selected agents.

1st Round: Agent *i* is selected with probability 1/n

2nd Round: Agent *j* is selected with probability $\frac{d(x_i, x_i)}{\sum_{x \in \mathcal{X}} d(x_i, x_i)}$

Proportional Mechanism

Facilities open at the locations of selected agents.

1st Round: Agent *i* is selected with probability 1/n

2nd Round: Agent *j* is selected with probability $\frac{d(x_i, x_i)}{\sum_{x \in \mathcal{X}} d(x_i, x_i)}$

- Strategyproof and 4-approximate for general metrics.
- Not strategyproof for > 2 facilities ! Profile $(0:many, 1:50, 1+10^5:4, 101+10^5:1), 1 \rightarrow 1+10^5$.

k-Facility Location for $k \ge 3$

Imposing mechanisms

- **Imposing** mechanisms may **penalize liars** by forbidding the agents to connect to certain facilities.
- Agents connect to the facility nearest to reported location.

k-Facility Location for $k \ge 3$

Imposing mechanisms

- **Imposing** mechanisms may **penalize liars** by forbidding the agents to connect to certain facilities.
- Agents connect to the facility nearest to reported location.

Differentially Private Imposing Mechanisms [Niss Smorod Tennen 10]

- Differentially private mechs are almost strategyproof [McSTal 07].
- Complement them with an **imposing gap** mechanism that **penalizes liars**.

k-Facility Location for $k \ge 3$

Imposing mechanisms

- **Imposing** mechanisms may **penalize liars** by forbidding the agents to connect to certain facilities.
- Agents connect to the facility nearest to reported location.

Differentially Private Imposing Mechanisms [Niss Smorod Tennen 10]

- Differentially private mechs are almost strategyproof [McSTal 07].
- Complement them with an **imposing gap** mechanism that **penalizes liars**.
- For *k*-Facility Location on the line, randomized strategyproof mechanism with $cost \le OPT + n^{2/3}$.
- OPT may be *O*(1), running time exponential in *k*.

Randomized k-Facility Location for $k \ge 3$ [F. Tzamos 10]

Winner-Imposing Mechanisms

• Agents with a facility at their reported location connect to it. Otherwise, no restriction whatsoever.

Winner-Imposing Mechanisms

- Agents with a **facility** at their **reported** location **connect** to it. Otherwise, **no restriction** whatsoever.
- Winner-imposing version of the Proportional Mechanism is strategyproof and 4*k*-approximate in general metrics, for any *k*.

Equal-Cost Mechanism

- **Optimal maximum** cost OPT = C/2.
- Cover all agents with *k* disjoint intervals of length *C*.

Equal-Cost Mechanism

- **Optimal maximum** cost OPT = C/2.
- Cover all agents with *k* disjoint intervals of length *C*.
- Place a facility to an **end** of each interval. With prob. 1/2, facility at L - R - L - R - ... With prob. 1/2, facility at R - L - R - L - ...

Equal-Cost Mechanism

- **Optimal maximum** cost OPT = C/2.
- Cover all agents with *k* disjoint intervals of length *C*.
- Place a facility to an **end** of each interval. With prob. 1/2, facility at L - R - L - R - ... With prob. 1/2, facility at R - L - R - L - ...

Agents' Cost and Approximation Ratio

• Agent *i* has expected $cost = (C - x_i)/2 + x_i/2 = C/2 = OPT$.

Equal-Cost Mechanism

- **Optimal maximum** cost OPT = C/2.
- Cover all agents with *k* disjoint intervals of length *C*.
- Place a facility to an **end** of each interval. With prob. 1/2, facility at L - R - L - R - ... With prob. 1/2, facility at R - L - R - L - ...

Agents' Cost and Approximation Ratio

- Agent *i* has expected $cost = (C x_i)/2 + x_i/2 = C/2 = OPT$.
- Approx. ratio: 2 for the maximum cost, *n* for the social cost.

Equal-Cost Mechanism

- Cover all agents with *k* disjoint intervals of length *C*.
- Place a facility to an end of each interval.

Strategyproofness

- Agents do not have incentives to lie and increase OPT.
- Let agent *i* declare y_i and decrease OPT to C'/2 < C/2.

Equal-Cost Mechanism

- Cover all agents with *k* disjoint intervals of length *C*.
- Place a facility to an end of each interval.

Strategyproofness

- Agents do not have incentives to lie and increase OPT.
- Let agent *i* declare y_i and decrease OPT to C'/2 < C/2.
- Distance of x_i to **nearest** C'**-interval** $\geq C C'$.

Equal-Cost Mechanism

- Cover all agents with *k* disjoint intervals of length *C*.
- Place a facility to an end of each interval.

Strategyproofness

- Agents do not have incentives to lie and increase OPT.
- Let agent *i* declare y_i and decrease OPT to C'/2 < C/2.
- Distance of x_i to **nearest** C'-interval $\geq C C'$.
- *i*'s expected $\cot 2 \le (C C')/2 + C/2 = C C'/2 > C/2$

Equal-Cost Mechanism

- **Cover** all agents with *k* **disjoint intervals** of length *C*.
- Place a facility to an **end** of each interval.

Agents with Concave Costs

Generalized Equal-Cost Mechanism is **strategyproof** and has the **same approximation** ratio if agents' cost is a **concave function** of distance to the nearest facility.

Deterministic 2-Facility Location on the Line

Approximation Ratio $\leq n - 2$ [PT09]

Place facilities at the leftmost and at the rightmost location :

 $F(x_1,\ldots,x_n)=(\min\{x_1,\ldots,x_n\},\max\{x_1,\ldots,x_n\})$

Approximation Ratio $\leq n - 2$ [PT09]

Place facilities at the leftmost and at the rightmost location :

 $F(x_1,\ldots,x_n)=(\min\{x_1,\ldots,x_n\},\max\{x_1,\ldots,x_n\})$

Approximation Ratio > (n-1)/2 [LSWZ10]

For all *a* < *b* < 1, any deterministic strategyproof mechanism *F* with approximation ratio < (*n* − 1)/2 must have:

$$F(\underbrace{a, \dots, a}_{(n-1)/2}, \underbrace{b, \dots, b}_{(n-1)/2}, 1) = (a, b)$$

• Contradiction for a = 0 and $b = 1/n^2$.

Approximability by Deterministic Mechanisms [F. Tzam. 12]

Deterministic 2-Facility Location on the Line

Nice mechanisms \equiv deterministic strategyproof mechanisms with a **bounded approximation**.

Niceness objective-independent and facilitates the characterization!

Approximability by Deterministic Mechanisms [F. Tzam. 12]

Deterministic 2-Facility Location on the Line

```
Nice mechanisms \equiv deterministic strategyproof mechanisms with a bounded approximation.
```

Niceness **objective-independent** and **facilitates** the characterization! Any **nice** mechanism *F* for $n \ge 5$ agents:

- Either $F(x) = (\min x, \max x)$ for all x (Two Extremes).
- Or admits unique **dictator** *j*, i.e., $x_j \in F(x)$ for all *x*.

Deterministic 2-Facility Location on the Line

```
Nice mechanisms \equiv deterministic strategyproof mechanisms with a bounded approximation.
```

Niceness **objective-independent** and **facilitates** the characterization! Any **nice** mechanism *F* for $n \ge 5$ agents:

- Either $F(x) = (\min x, \max x)$ for all x (Two Extremes).
- Or admits unique **dictator** *j*, i.e., $x_j \in F(x)$ for all *x*.

Dictatorial Mechanism with Dictator *j*

- Consider distances $d_l = x_j \min x$ and $d_r = \max x x_j$.
- Place the first facility at x_j and the second at $x_j \max\{d_l, 2d_r\}$, if $d_l > d_r$, and at $x_j + \max\{2d_l, d_r\}$, otherwise.
- Strategyproof and (n-1)-approximate.

Approximability by Deterministic Mechanisms [F. Tzam. 10]

Consequences

- **Two Extremes** is the **only anonymous** nice mechanism for allocating 2 facilities to *n* ≥ 5 agents on the line.
- The **approximation ratio** for 2-Facility Location on the line by deterministic strategyproof mechanisms is n 2.

Approximability by Deterministic Mechanisms [F. Tzam. 10]

Consequences

- **Two Extremes** is the **only anonymous** nice mechanism for allocating 2 facilities to *n* ≥ 5 agents on the line.
- The approximation ratio for 2-Facility Location on the line by deterministic strategyproof mechanisms is n 2.

Deterministic *k*-Facility Location, for all $k \ge 3$

There are **no anonymous nice** mechanisms for *k*-Facility Location for all $k \ge 3$ (even on the **line** and for n = k + 1).

Approximability by Deterministic Mechanisms [F. Tzam. 10]

Consequences

- **Two Extremes** is the **only anonymous** nice mechanism for allocating 2 facilities to *n* ≥ 5 agents on the line.
- The approximation ratio for 2-Facility Location on the line by deterministic strategyproof mechanisms is n 2.

Deterministic *k*-Facility Location, for all $k \ge 3$

There are **no anonymous nice** mechanisms for *k*-Facility Location for all $k \ge 3$ (even on the **line** and for n = k + 1).

Deterministic 2-Facility Location in General Metrics

There are **no nice** mechanisms for 2-Facility Location in metrics more general than the line and the circle (even for 3 agents in a star).

Consistent Allocation for Well-Separated Instances

Well-Separated Instances

- Let *F* be a nice mechanism for *k*-FL with approximation ratio *ρ*.
- (k + 1)-agent instance x is $(i_1 | \cdots | i_{k-1} | i_k, i_{k+1})$ -well-separated if $x_{i_1} < \cdots < x_{i_{k+1}}$ and $\rho(x_{i_{k+1}} x_{i_k}) < \min_{2 \le \ell \le k} \{x_{i_\ell} x_{i_{\ell-1}}\}$.

(1|2|3,4)-well-separated instance

Consistent Allocation for Well-Separated Instances

The Nearby Agents Slide on the Right

- Let x be $(i_1|\cdots|i_{k-1}|i_k,i_{k+1})$ -well-separated with $F_k(x) = x_{i_k}$.
- Then, for all $(i_1|\cdots|i_{k-1}|i_k, i_{k+1})$ -well-separated $\mathbf{x}' = (\mathbf{x}_{\{i_k, i_{k+1}\}}, \mathbf{x}'_{i_k}, \mathbf{x}'_{i_{k+1}})$ with $\mathbf{x}_{i_k} \le \mathbf{x}'_{i_k}, F_k(\mathbf{x}') = \mathbf{x}'_{i_k}$.

Dimitris Fotakis Mechanism Design without Money

Consistent Allocation for Well-Separated Instances

The Nearby Agents Slide on the Right

- Let x be $(i_1|\cdots|i_{k-1}|i_k,i_{k+1})$ -well-separated with $F_k(x) = x_{i_k}$.
- Then, for all $(i_1|\cdots|i_{k-1}|i_k, i_{k+1})$ -well-separated $\mathbf{x}' = (\mathbf{x}_{-\{i_k, i_{k+1}\}}, \mathbf{x}'_{i_k}, \mathbf{x}'_{i_{k+1}})$ with $\mathbf{x}_{i_k} \le \mathbf{x}'_{i_k}, F_k(\mathbf{x}') = \mathbf{x}'_{i_k}$.

The Nearby Agents Slide on the Left

• Let x be $(i_1|\cdots|i_{k-1}|i_k,i_{k+1})$ -well-separated with $F_k(x) = x_{i_{k+1}}$.

• Then, for all
$$(i_1|\cdots|i_{k-1}|i_k,i_{k+1})$$
-well-separated $\mathbf{x}' = (\mathbf{x}_{-\{i_k,i_{k+1}\}}, \mathbf{x}'_{i_k}, \mathbf{x}'_{i_{k+1}})$ with $\mathbf{x}'_{i_{k+1}} \leq \mathbf{x}_{i_{k+1}}, F_k(\mathbf{x}') = \mathbf{x}'_{i_{k+1}}$

Dimitris Fotakis Mechanism Design without Money

Theorem

There are **no anonymous nice** mechanisms for *k*-Facility Location for all $k \ge 3$ (even on the **line** and for n = k + 1).

Theorem

There are **no anonymous nice** mechanisms for *k*-Facility Location for all $k \ge 3$ (even on the **line** and for n = k + 1).

Theorem

There are **no anonymous nice** mechanisms for *k*-Facility Location for all $k \ge 3$ (even on the **line** and for n = k + 1).

- Image set $I_4(x_{-4}) = \{a : F(x_{-4}, y) = a \text{ for some location } y\}$ Set of locations where a facility can be forced by agent 4 in x_{-4} .
- *F* strategyproof iff all agents get the best in their image set.

Theorem

There are **no anonymous nice** mechanisms for *k*-Facility Location for all $k \ge 3$ (even on the **line** and for n = k + 1).

- Image set $I_4(x_{-4}) = \{a : F(x_{-4}, y) = a \text{ for some location } y\}$ Set of locations where a facility can be forced by agent 4 in x_{-4} .
- *F* strategyproof iff all agents get the best in their image set.

Theorem

There are **no anonymous nice** mechanisms for *k*-Facility Location for all $k \ge 3$ (even on the **line** and for n = k + 1).

- Image set $I_4(x_{-4}) = \{a : F(x_{-4}, y) = a \text{ for some location } y\}$ Set of locations where a facility can be forced by agent 4 in x_{-4} .
- *F* strategyproof iff all agents get the best in their image set.

Theorem

There are **no anonymous nice** mechanisms for *k*-Facility Location for all $k \ge 3$ (even on the **line** and for n = k + 1).

- Image set $I_4(x_{-4}) = \{a : F(x_{-4}, y) = a \text{ for some location } y\}$ Set of locations where a facility can be forced by agent 4 in x_{-4} .
- *F* strategyproof iff all agents get the best in their image set.

Theorem

There are **no anonymous nice** mechanisms for *k*-Facility Location for all $k \ge 3$ (even on the **line** and for n = k + 1).

- Image set $I_4(x_{-4}) = \{a : F(x_{-4}, y) = a \text{ for some location } y\}$ Set of locations where a facility can be forced by agent 4 in x_{-4} .
- *F* strategyproof iff all agents get the best in their image set.
- Contradicts **bounded approximation** ratio of *F*.

Nice Mechanisms for 2-Facility Location on the Line

Characterization for 3-Agent Instances

Any **nice** mechanism *F* for n = 3 agents:

- $\exists \le 2$ permutations π_1, π_2 with $\pi_1(2) = \pi_2(2)$: for all x compatible with π_1 or $\pi_2, \text{ med } x \in F(x)$ (partial dictator).
- For any other π and x compatible with π , $F(x) = (\min x, \max x)$.

Nice Mechanisms for 2-Facility Location on the Line

Characterization for 3-Agent Instances

Any **nice** mechanism *F* for n = 3 agents:

- $\exists \le 2$ permutations π_1, π_2 with $\pi_1(2) = \pi_2(2)$: for all x compatible with π_1 or $\pi_2, \text{ med } x \in F(x)$ (partial dictator).
- For any other π and x compatible with π , $F(x) = (\min x, \max x)$.

Characterization for 3-Location Instances

Any **nice** mechanism *F* for $n \ge 5$ agents on 3 locations:

- Either has $F(x) = (\min x, \max x)$ for all x.
- Or admits a unique **dictator** *j* , i.e., $x_j \in F(x)$ for all *x*.

Nice Mechanisms for 2-Facility Location on the Line

Characterization for 3-Agent Instances

Any **nice** mechanism *F* for n = 3 agents:

- $\exists \le 2$ permutations π_1, π_2 with $\pi_1(2) = \pi_2(2)$: for all x compatible with π_1 or $\pi_2, \text{med } x \in F(x)$ (partial dictator).
- For any other π and x compatible with π , $F(x) = (\min x, \max x)$.

Characterization for 3-Location Instances

Any **nice** mechanism *F* for $n \ge 5$ agents on 3 locations:

- Either has $F(x) = (\min x, \max x)$ for all x.
- Or admits a unique **dictator** *j* , i.e., $x_j \in F(x)$ for all *x*.

General Characterization

Any **nice** mechanism *F* for $n \ge 5$ agents:

- Either has $F(x) = (\min x, \max x)$ for all x.
- Or admits a unique **dictator** *j*, i.e., $x_j \in F(x)$ for all *x*.

Well-Separated Instances

Allocation for Fixed Permutation of Nearby Agents

For any agent *i* and any loc. *a*, \exists unique threshold $p \in [a, +\infty) \cup \{\uparrow\}$: $\forall (i|j,k)$ -well-separated *x* with $x_i = a$,

 $F_2(\boldsymbol{x}) = \operatorname{med}(p, x_j, x_k)$

Well-Separated Instances

Allocation for Fixed Permutation of Nearby Agents

For any agent *i* and any loc. *a*, \exists unique **threshold** $p \in [a, +\infty) \cup \{\uparrow\}$: $\forall (i|j,k)$ -well-separated *x* with $x_i = a$,

 $F_2(\boldsymbol{x}) = \operatorname{med}(p, x_j, x_k)$

Allocation for Nearby Agents

- $\forall (i|j,k)$ -w.s. x with $x_i = a$: threshold p_1 s.t. $F_2(x) = \text{med}(p_1, x_j, x_k)$
- $\forall (i|k, j)$ -w.s. x with $x_i = a$: threshold p_2 s.t. $F_2(x) = \text{med}(p_2, x_j, x_k)$

Allocation for Fixed Permutation of Nearby Agents

For any agent *i* and any loc. *a*, \exists unique threshold $p \in [a, +\infty) \cup \{\uparrow\}$: $\forall (i|j,k)$ -well-separated *x* with $x_i = a$,

 $F_2(\boldsymbol{x}) = \operatorname{med}(p, x_j, x_k)$

- $\forall (i|j,k)$ -w.s. x with $x_i = a$: threshold p_1 s.t. $F_2(x) = \text{med}(p_1, x_j, x_k)$
- $\forall (i|k, j)$ -w.s. x with $x_i = a$: threshold p_2 s.t. $F_2(x) = \text{med}(p_2, x_j, x_k)$
- \forall *i*-left-w.s. x with $x_i = a$: the rightmost facility by gmvs on x_{-i} with $\alpha_{\emptyset} = a$, $\alpha_{\{k\}} = p_1$, $\alpha_{\{j\}} = p_2$, $\alpha_{\{j,k\}} = \uparrow$: $F_2(x) = \max\{\min\{x_i, p_2\}, \min\{x_k, p_1\}\}$

Allocation for Fixed Permutation of Nearby Agents

For any agent *i* and any loc. *a*, \exists unique threshold $p \in [a, +\infty) \cup \{\uparrow\}$: $\forall (i|j,k)$ -well-separated *x* with $x_i = a$,

 $F_2(\boldsymbol{x}) = \operatorname{med}(p, x_j, x_k)$

- $\forall (i|j,k)$ -w.s. x with $x_i = a$: threshold p_1 s.t. $F_2(x) = \text{med}(p_1, x_j, x_k)$
- $\forall (i|k, j)$ -w.s. x with $x_i = a$: threshold p_2 s.t. $F_2(x) = \text{med}(p_2, x_j, x_k)$
- \forall *i*-left-w.s. x with $x_i = a$: the rightmost facility by gmvs on x_{-i} with $\alpha_{\emptyset} = a$, $\alpha_{\{k\}} = p_1$, $\alpha_{\{j\}} = p_2$, $\alpha_{\{j,k\}} = \uparrow$: $F_2(x) = \max\{\min\{x_j, p_2\}, \min\{x_k, p_1\}\}$
- Due to **bounded approximation** ratio, either $p_1 = \uparrow$ or $p_2 = \uparrow$.

Allocation for Fixed Permutation of Nearby Agents

For any agent *i* and any loc. *a*, \exists unique threshold $p \in [a, +\infty) \cup \{\uparrow\}$: $\forall (i|j,k)$ -well-separated *x* with $x_i = a$,

 $F_2(\boldsymbol{x}) = \operatorname{med}(p, x_j, x_k)$

- $\forall (i|j,k)$ -w.s. x with $x_i = a$: threshold p_1 s.t. $F_2(x) = \text{med}(p_1, x_j, x_k)$
- $\forall (i|k, j)$ -w.s. x with $x_i = a$: threshold p_2 s.t. $F_2(x) = \text{med}(p_2, x_j, x_k)$
- \forall *i*-left-w.s. x with $x_i = a$: the rightmost facility by gmvs on x_{-i} with $\alpha_{\emptyset} = a$, $\alpha_{\{k\}} = p_1$, $\alpha_{\{j\}} = p_2$, $\alpha_{\{j,k\}} = \uparrow$: $F_2(x) = \max\{\min\{x_j, p_2\}, \min\{x_k, p_1\}\}$
- Due to **bounded approximation** ratio, either $p_1 = \uparrow$ or $p_2 = \uparrow$.
- If $p_2 = \uparrow$, *j* is the **preferred** agent of (*i*, *a*), and **threshold** $p = p_1$: $F_2(x) = \max\{x_j, \min\{x_k, p\}\}$

Allocation for Fixed Permutation of Nearby Agents

For any agent *i* and any loc. *a*, \exists unique threshold $p \in [a, +\infty) \cup \{\uparrow\}$: $\forall (i|j,k)$ -well-separated *x* with $x_i = a$,

 $F_2(\boldsymbol{x}) = \operatorname{med}(p, x_j, x_k)$

- $\forall (i|j,k)$ -w.s. x with $x_i = a$: threshold p_1 s.t. $F_2(x) = \text{med}(p_1, x_j, x_k)$
- $\forall (i|k, j)$ -w.s. x with $x_i = a$: threshold p_2 s.t. $F_2(x) = \text{med}(p_2, x_j, x_k)$
- \forall *i*-left-w.s. x with $x_i = a$: the rightmost facility by gmvs on x_{-i} with $\alpha_{\emptyset} = a$, $\alpha_{\{k\}} = p_1$, $\alpha_{\{j\}} = p_2$, $\alpha_{\{j,k\}} = \uparrow$: $F_2(x) = \max\{\min\{x_j, p_2\}, \min\{x_k, p_1\}\}$
- Due to **bounded approximation** ratio, either $p_1 = \uparrow$ or $p_2 = \uparrow$.
- If $p_2 = \uparrow$, *j* is the **preferred** agent of (*i*, *a*), and **threshold** $p = p_1$: $F_2(x) = \max\{x_j, \min\{x_k, p\}\}$
- If p = a, then $F_2(x) = \max\{x_j, x_k\}$. If $p = \uparrow$, then $F_2(x) = x_j$.

Extension to General Instances

The Range of the Threshold

The Threshold Can Only Take Two Extreme Values

For any agent *i* and location *a* :

- The **left** threshold of (i, a) is either a or \uparrow
- The **right** threshold of (i, a) is either a or \downarrow

The Range of the Threshold

The Threshold Can Only Take Two Extreme Values

For any agent *i* and location *a* :

- The **left** threshold of (i, a) is either a or \uparrow
- The **right** threshold of (i, a) is either a or \downarrow

Dimitris Fotakis Mechanism Design without Money

Nice Mechanisms for 2-Facility Location on the Line

Characterization for 3-Agent Instances

Any **nice** mechanism *F* for n = 3 agents:

- $\exists \le 2$ permutations π_1, π_2 with $\pi_1(2) = \pi_2(2)$: for all x compatible with π_1 or $\pi_2, \text{ med } x \in F(x)$ (partial dictator).
- For any other π and x compatible with π , $F(x) = (\min x, \max x)$.

Nice Mechanisms for 2-Facility Location on the Line

Characterization for 3-Agent Instances

Any **nice** mechanism *F* for n = 3 agents:

- $\exists \le 2$ permutations π_1, π_2 with $\pi_1(2) = \pi_2(2)$: for all x compatible with π_1 or $\pi_2, \text{ med } x \in F(x)$ (partial dictator).
- For any other π and x compatible with π , $F(x) = (\min x, \max x)$.

Characterization for 3-Location Instances

Any **nice** mechanism *F* for $n \ge 5$ agents on 3 locations:

- Either has $F(x) = (\min x, \max x)$ for all x.
- Or admits a unique **dictator** *j*, i.e., $x_j \in F(x)$ for all *x*.

Nice Mechanisms for 2-Facility Location on the Line

Characterization for 3-Agent Instances

Any **nice** mechanism *F* for n = 3 agents:

- $\exists \le 2$ permutations π_1, π_2 with $\pi_1(2) = \pi_2(2)$: for all x compatible with π_1 or $\pi_2, \text{med } x \in F(x)$ (partial dictator).
- For any other π and x compatible with π , $F(x) = (\min x, \max x)$.

Characterization for 3-Location Instances

Any **nice** mechanism *F* for $n \ge 5$ agents on 3 locations:

- Either has $F(x) = (\min x, \max x)$ for all x.
- Or admits a unique **dictator** *j*, i.e., $x_j \in F(x)$ for all *x*.

General Characterization

Any **nice** mechanism *F* for $n \ge 5$ agents:

- Either has $F(x) = (\min x, \max x)$ for all x.
- Or admits a unique **dictator** *j*, i.e., $x_j \in F(x)$ for all *x*.

- Lower bound of 2 for mechanisms restricted to agents' locations.
- Exploit **well-separated** instances and **extend** the lower bound to **unrestricted** randomized mechanisms.

- Lower bound of 2 for mechanisms restricted to agents' locations.
- Exploit **well-separated** instances and **extend** the lower bound to **unrestricted** randomized mechanisms.

The Power of Verification in Mechanism Design without Money

• (Implicit or explicit) verification restricts agents' declarations.

- Lower bound of 2 for mechanisms restricted to agents' locations.
- Exploit **well-separated** instances and **extend** the lower bound to **unrestricted** randomized mechanisms.

The Power of Verification in Mechanism Design without Money

- (Implicit or explicit) verification restricts agents' declarations.
 - ε -verification : agent *i* at x_i can only declare anything in $[x_i \varepsilon, x_i + \varepsilon]$, [Carag. Elk. Szeg. Yu 12] [Archer Klein. 08]

- Lower bound of 2 for mechanisms restricted to agents' locations.
- Exploit **well-separated** instances and **extend** the lower bound to **unrestricted** randomized mechanisms.

The Power of Verification in Mechanism Design without Money

- (Implicit or explicit) verification restricts agents' declarations.
 - ε -verification : agent *i* at x_i can only declare anything in $[x_i \varepsilon, x_i + \varepsilon]$, [Carag. Elk. Szeg. Yu 12] [Archer Klein. 08]
 - Winner-imposing: lies that increase mechanism's cost cause a (proportional) penalty to the agent [F.Tzamos 10] [Koutsoupias 11]

- Lower bound of 2 for mechanisms restricted to agents' locations.
- Exploit **well-separated** instances and **extend** the lower bound to **unrestricted** randomized mechanisms.

The Power of Verification in Mechanism Design without Money

- (Implicit or explicit) verification restricts agents' declarations.
 - ε -verification : agent *i* at x_i can only declare anything in $[x_i \varepsilon, x_i + \varepsilon]$, [Carag. Elk. Szeg. Yu 12] [Archer Klein. 08]
 - Winner-imposing: lies that increase mechanism's cost cause a (proportional) penalty to the agent [F. Tzamos 10] [Koutsoupias 11]
- Non-symmetric verification: conditions under which the mechanism gets some advantage.

Research Directions

Non-Symmetric Verification to Particular Domains

- Combinatorial Auctions without money, assuming that bidders do not overbid on winning sets [F. Krysta Ventre 13]
- *k*-Combinatorial Public Project without overbidding on winning (sub)sets.

Research Directions

Non-Symmetric Verification to Particular Domains

- Combinatorial Auctions without money, assuming that bidders do not overbid on winning sets [F. Krysta Ventre 13]
- *k*-Combinatorial Public Project without overbidding on winning (sub)sets.

A Priori Verification of Few Agents

- What if declarations of **few agents** can be **verified before** the mechanism is applied.
- *O*(1)-approximation achievable for *k*-Facility Location by verifying the locations of *O*(*k*) selected agents?
- Minimum #agents verified to achieve a **given approximation** ratio for a particular problem.

Research Directions

Non-Symmetric Verification to Particular Domains

- Combinatorial Auctions without money, assuming that bidders do not overbid on winning sets [F. Krysta Ventre 13]
- *k*-Combinatorial Public Project without overbidding on winning (sub)sets.

A Priori Verification of Few Agents

- What if declarations of **few agents** can be **verified before** the mechanism is applied.
- *O*(1)-approximation achievable for *k*-Facility Location by verifying the locations of *O*(*k*) selected agents?
- Minimum #agents verified to achieve a **given approximation** ratio for a particular problem.
- Choice of agents, implementation, what if an agent caught lying?