Approximation Algorithms Chapter 26 Semidefinite Programming

0

Zacharias Pitouras

Introduction

- LP place a good lower bound on OPT for NP-hard problems
- Are there other ways of doing this?
- Vector programs provide another class of relaxations
- For problems expressed as strict quadratic programs
- Vector programs are equivalent to semidefinite programs
- Semidefinite programs can be solved in time polynomial in *n* and $log(1/\epsilon)$
- A 0.87856 factor algorithm for MAX-CUT

Contents

- Strict quadratic programs and vector programs
- Properties of positive semidefinite matrices
- The semidefinite programming problem
- Randomized rounding algorithm
- Improving the guarantee for MAX-2SAT
- Notes

The maximum cut problem

- MAX-CUT
- Given an undirected graph G=(V,E), with edge weights w: E → Q⁺, find a partition (S,S̄) of V so as to maximize the total weight of edges in this cut, i.e., edges that have one endpoint in S and one endpoint in S̄.

Strict quadratic programs and vector programs (1)

- A quadratic program is the problem of optimizing a quadratic function of integer valued variables, subject to quadratic constraints on these variables.
- *Strict quadratic program*: monomials of degree 0 or 2.
- Strict quadratic program for MAX-CUT:

 y_i an indicator variable for vertex v_i with values +1 or -1. Partition, $S = \{v_i | y_i = 1\}, \overline{S} = \{v_i | y_i = -1\}$ If v_i and v_j on opposite sides, then $y_i y_j = -1$ and edge contributes w_{ij} to objective function On the other hand, edge makes no contribution.

Strict quadratic programs and vector programs (2)

• An optimal solution to this program is a maximum cut in *G*.

maximize
$$\frac{1}{2} \sum_{1 \le i < j \le n} w_{ij} \left(1 - y_i y_j \right)$$

subject to
$$y_i^2 = 1$$
, $\upsilon_i \in V$
 $y_i \in \mathbb{Z}$, $\upsilon_i \in V$

Strict quadratic programs and vector programs (3)

- This program relaxes to a vector program
- A vector program is defined over *n* vector variables in **R**ⁿ, say v₁, v₂, ..., v_n, and is the problem of optimizing a linear function of the inner products v_i. v_j for 1 ≤ i ≤ j ≤ n, subject to linear constraints on these inner products
- A vector program is obtained from a linear program by replacing each variable with an inner product of a pair of these vectors

Strict quadratic programs and vector programs (4)

- A strict quadratic program over *n* integer variables defines a vector program over *n* vector variables in **R**ⁿ
- Establish a correspondence between the *n* integer variables and the *n* vector variables, and replace each degree 2 term with the corresponding inner product
- $y_i \cdot y_j$ is replaced with $v_i \cdot v_j$

Strict quadratic programs and vector programs (5)

• Vector program for MAX-CUT

maximize
$$\frac{1}{2} \sum_{1 \le i < j \le n} w_{ij} \left(1 - \upsilon_i \upsilon_j \right)$$

subject to
$$\upsilon_i \cdot \upsilon_i = 1$$
, $\upsilon_i \in V$
 $\upsilon_i \in \mathbf{R}^n$, $\upsilon_i \in V$

Strict quadratic programs and vector programs (6)

- Because of the constraint v_i. v_j =1, the vectors v₁, v₂, ..., v_n are constrained to lie on the n-dimensional sphere S_{n-1}
- Any feasible solution to the strict quadratic program of MAX-CUT yields a solution to the vector program

 $(y_i, 0, ..., 0)$ is assigned to v_i

- The vector program corresponding to a strict quadratic program is a relaxation of the quadratic program providing an upper bound on OPT
- Vector programs are approximable to any desired degree of accuracy in polynomial time

Properties of positive semidefinite matrices (1)

- Let *A* be a real, symmetric *n n* matrix
- Then *A* has real eigenvalues and has *n* linearly independent eigenvectors
- A is positive semidefinite if $\forall x \in \mathbf{R}^n, x^T A x \ge 0$
- Theorem 26.3 Let A be a real symmetric n n matrix. Then the following are equivalent:
 1. ∀x ∈ ℝⁿ, x^T Ax ≥ 0
 - 2. All eigenvalues of **A** are nonnegative
 - 3. There is an *n* real matrix **W**, such that $A = W^T W$

Properties of positive semidefinite matrices (2)

Proof: $(1 \Rightarrow 2)$: Let λ be an eigenvalue of \boldsymbol{A} , and let \boldsymbol{v} be a corresponding eigenvector. Therefore, $\boldsymbol{A}\boldsymbol{v} = \lambda\boldsymbol{v}$. Pre-multiplying by \boldsymbol{v}^T we get $\boldsymbol{v}^T \boldsymbol{A}\boldsymbol{v} = \lambda\boldsymbol{v}^T\boldsymbol{v}$. Now, by (1), $\boldsymbol{v}^T \boldsymbol{A}\boldsymbol{v} \ge 0$. Therefore, $\lambda\boldsymbol{v}^T\boldsymbol{v} \ge 0$. Since $\boldsymbol{v}^T\boldsymbol{v} > 0, \lambda \ge 0$. $(2 \Rightarrow 3)$: Let $\lambda_1, \ldots, \lambda_n$ be the *n* eigenvalues of \boldsymbol{A} , and $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$ be the corresponding complete collection of orthonormal eigenvectors. Let \boldsymbol{Q} be the matrix whose columns are $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$, and $\boldsymbol{\Lambda}$ be the diagonal matrix with entries $\lambda_1, \ldots, \lambda_n$. Since for each $i, \boldsymbol{A}\boldsymbol{v}_i = \lambda_i \boldsymbol{v}_i$, we have $\boldsymbol{A}\boldsymbol{Q} = \boldsymbol{Q}\boldsymbol{\Lambda}$. Since \boldsymbol{Q} is orthogonal, i.e., $\boldsymbol{Q}\boldsymbol{Q}^T = I$, we get that $\boldsymbol{Q}^T = \boldsymbol{Q}^{-1}$. Therefore,

 $\boldsymbol{A} = \boldsymbol{\mathbf{Q}}\boldsymbol{\boldsymbol{\Lambda}}\boldsymbol{\mathbf{Q}}^T.$

Let D be the diagonal matrix whose diagonal entries are the positive square roots of $\lambda_1, \ldots, \lambda_n$ (by (2), $\lambda_1, \ldots, \lambda_n$ are nonnegative, and thus their square roots are real). Then, $\Lambda = DD^T$. Substituting, we get

 $\boldsymbol{A} = \boldsymbol{\mathbf{Q}} \boldsymbol{D} \boldsymbol{D}^T \boldsymbol{\mathbf{Q}}^T = (\boldsymbol{\mathbf{Q}} \boldsymbol{D}) (\boldsymbol{\mathbf{Q}} \boldsymbol{D})^T.$

Now, (3) follows by letting $\boldsymbol{W} = (\boldsymbol{Q}\boldsymbol{D})^T$. (3 \Rightarrow 1): For any

$$\boldsymbol{x} \in \mathbf{R}^n, \ \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{W}^T \boldsymbol{W} \boldsymbol{x} = (\boldsymbol{W} \boldsymbol{x})^T (\boldsymbol{W} \boldsymbol{x}) \ge 0.$$

Properties of positive semidefinite matrices (3)

- With Cholesky decomposition a real symmetric matrix can be decomposed in polynomial time as $A = UAU^T$, where A is a diagonal matrix whose diagonal entries are the eigenvalues of A
- A is positive semidefinite if all the entries of Λ are nonnegative giving a polynomial time test for positive semidefiniteness
- The decomposition WW^T is not polynomial time computable, but can be approximated
- The sum of two positive semidefinite matrices is also positive semidefinite
- Convex combination is also positive semidefinite

The semidefinite programming problem (1)

- Let Y be an n n matrix of real valued variables with y_{ij} entry
- The *semidefinite programming problem* is the problem of maximizing a linear function of the y_{ij} 's, subject to linear constraints on them, and the additional constraint that *Y* be symmetric and positive semidefinite

The semidefinite programming problem (2)

- Denote by \mathbf{R}^{n} the space of n n real matrices
- The trace of a matrix *A* is the sum of its diagonal entries and is denoted by tr(*A*)
- The Frobenius inner product of matrices A, B is defined to be

$$\boldsymbol{A} \bullet \boldsymbol{B} = \operatorname{tr}(\boldsymbol{A}^T \boldsymbol{B}) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} b_{ij}$$

- M_n denotes the cone of symmetric n n real matrices
- For $A \in M_n$, $A \succeq 0$ denotes that A is pos. sem.

The semidefinite programming problem (3)

• The general semidefinite programming problem, S:

max imize $C \bullet Y$ subject to $D_i \bullet Y = d_i, \quad 1 \le i \le k$

$$Y \succeq 0,$$
$$Y \in M_n$$

The semidefinite programming problem (4)

- A matrix satisfying all the constraints is a feasible solution and so is any convex combination of these solutions
- Let *A* be an infeasible point. Let *C* be another point. A hyperplane $C \bullet Y \leq b$ is called a seperating hyperplane for *A* if all feasible points satisfy it and point *A* does not
- **Theorem 26.4** *Let* S *be a semidefinite programming problem, and* **A** *be a point in* **R**^{n n}. We can determine in polynomial time, *whether* **A** *is feasible for* S *and, if it is not, find a separating hyperplane.*

The semidefinite programming problem (4)

- **Proof:** Testing for feasibility involves ensuring that *A* is symmetric and positive semidefinite and satisfies all the constraints. This can be done in polynomial time. If *A* is infeasible, a separating hyperplane is obtained as follows.
 - If *A* is not symmetric, $\alpha_{ij} > \alpha_{ji}$ for some *i*,*j*. Then $y_{ij} \le y_{ji}$ is a separating hyperplane
 - If A is not positive semidefinite, then it has a negative eigenvalue, say λ , and v the corresponding eigenvector. Then,
 - $(\upsilon \upsilon^T) \bullet \mathbf{Y} = \upsilon^T \mathbf{Y} \upsilon \ge 0$ is a separating hyperplane.
 - If any of the linear constraints is violated, it directly yields a separating hyperplane

The semidefinite programming problem (5)

- Let V be a vector program on *n n*-dimensional vector variables v_1 , v_2 , ..., v_n .
- Define the corresponding semidefinite program, S, over n^2 variables y_{ij} , for $1 \le i,j \le n$ as follows:
 - Replace each inner product $v_i \cdot v_j$ by the variable y_{ij} .
 - Require that matrix *Y* is symmetric and positive semidefinite
- Lemma 26.5 Vector program V is equivalent to semidefinite program S

The semidefinite programming problem (6)

- **Proof:** One must show that corresponding to each feasible solution to V, there is a feasible solution to S of the same objective function value and vice versa
 - Let α₁,..., α_n be a feasible solution to V. Let W be the matrix whose columns are α₁,..., α_n
 Then it is easy to see that A=W^T W is a feasible solution to S having the same objective function value
 - Let A be a feasible solution to S. By theorem 26.3 there is a n n matrix W such that A=W^T W. Let α₁,..., α_n be the columns of W. Then it is easy to see that α₁,..., α_n is a feasible solution to V having the same objective function value

The semidefinite programming problem (7)

• The semidefinite programming relaxation to MAX-CUT is:

maximize
$$\frac{1}{2} \sum_{1 \le i < j \le n} w_{ij} \left(1 - y_i y_j \right)$$

subject to
$$y_i^2 = 1$$
, $\upsilon_i \in V$

 $Y \succeq 0,$ $Y \in M_n$

Randomized rounding algorithm (1)

- Assume we have an optimal solution to the vector program
- Let α₁,..., α_n be an optimal solution and let OPT_v denote its objective function value
- These vectors lie on the *n*-dimensional unit sphere S_{n-1}
- We need a cut (S,\overline{S}) whose weight is a large fraction of OPT_v

Randomized rounding algorithm (2)

• Let θ_{ij} denote the angle between vectors α_i and α_j . The contribution of this pair of vectors to OPT_v is,

$$\frac{w_{ij}}{2}(1-\cos\theta_{ij})$$

- The closer θ_{ij} is to π , the larger the contribution will be
- Pick *r* to be a uniformly distributed vector on the unit sphere and let $S = \{v_i | a_i \cdot r \ge 0\}$

Randomized rounding algorithm (3)

• Lemma 26.6

• **Pr**[v_i and v_j are separated]= θ_{ij}/π

• Proof:

- Project *r* onto the plane containing α_i and α_j
- Now, vertices v_i and v_j will be separated iff the projection lies in one of the two arcs of angle θ_{ij} . Since *r* has been picked from a spherically symmetric distribution, its projection will be a random direction in the plane. The lemma follows.

Randomized rounding algorithm (4)

- Lemma 26.7 Let x_1 , ..., x_n be picked independently from the normal distribution with mean 0 and unit standard deviation. Let $d = \sqrt{x_1^2 + ... + x_n^2}$. Then, $(x_1/d,...,x_n/d)$ is a random vector on the unit sphere.
- Algorithm 26.8 (MAX-CUT)

1. Solve vector program V. Let $\alpha_1, \ldots, \alpha_n$ be an optimal solution.

2. Pick *r* to be a uniformly distributed vector on the unit sphere.

3. Let $S = \{ v_i \mid a_i \cdot r \ge 0 \}$

Randomized rounding algorithm (5)

- Lemma 26.9 $E[W] \ge \alpha * OPT_v$
- **Corollary 26.10** *The integrality gap for vector relaxation is at least a*>0.87856

• **Theorem 26.11** *There is a randomized approximation algorithm for MAX-CUT achieving an approximation factor of* 0.87856 Improving the guarantee for MAX-2SAT (1)

- MAX-2SAT is the restriction of MAX-SAT to formulae in which each clause contains at most two literals
- Already obtained a ³/₄ algorithm for that
- Semidefinite programming gives an improved algorithm
- Idea: convert the obvious quadratic program into a strict quadratic program

Improving the guarantee for MAX-2SAT (2)

- To each Boolean variable x_i introduce variable y_i which is constrained to be either +1 or -1, for $1 \le i \le n$. In addition introduce another variable y_0 which is also constrained to be either +1 or -1.
- x_i is true if $y_i = y_0$ and false otherwise
- The value v(C) of clause C is defined to be 1 if C is satisfied and 0 otherwise
- For clauses containing only one literal

$$\upsilon(x_i) = \frac{1 + y_0 y_i}{2}$$
 and $\upsilon(\overline{x_i}) = \frac{1 - y_0 y_i}{2}$

Improving the guarantee for MAX-2SAT (3)

• For a clause with 2 literals

$$\upsilon(x_i \lor x_j) = 1 - \upsilon(\overline{x}_i)\upsilon(\overline{x}_j) = 1 - \frac{1 - y_0 y_i}{2} \frac{1 - y_0 y_j}{2}$$
$$= \frac{1}{4} \left(3 + y_0 y_i + y_0 y_j - y_0^2 y_i y_j \right)$$
$$= \frac{1 + y_0 y_i}{4} + \frac{1 + y_0 y_j}{4} + \frac{1 - y_i y_j}{4}$$

Improving the guarantee for MAX-2SAT (4)

• MAX-2SAT can be written as a strict quadratic program

maximize
$$\sum_{0 \le i < j \le n} \alpha_{ij} \left(1 + y_i y_j \right) + b_{ij} \left(1 - y_i y_j \right)$$

subject to
$$y_i^2 = 1$$
, $0 \le i \le n$

 $y_i \in \mathbb{Z}, \qquad 0 \le i \le n$

Improving the guarantee for MAX-2SAT (5)

• Corresponding vector program relaxation where vector variable v_i corresponds to y_i

maximize
$$\sum_{0 \le i < j \le n} \alpha_{ij} \left(1 + \upsilon_i \cdot \upsilon_j \right) + b_{ij} \left(1 - \upsilon_i \cdot \upsilon_j \right)$$

subject to
$$\upsilon_i \cdot \upsilon_j = 1$$
, $0 \le i \le n$

$$\upsilon_i \in \mathbf{R}^{n+1}, \qquad 0 \le i \le n$$

Improving the guarantee for MAX-2SAT (6)

- The algorithm is similar to that for MAX-CUT
- Let $\alpha_0, ..., \alpha_n$ be an optimal solution. Pick a vector r uniformly distributed on the unit sphere in (n+1) dimensions and let $y_i = 1$ iff $r \cdot a_i \ge 0$ for $0 \le i \le n$
- This gives a truth assignment for the Boolean variables
- Let *W* be the random variable denoting the weight of this truth assignment

Improving the guarantee for MAX-2SAT (7)

- Lemma 26.13 $\mathbf{E}[W] \ge \alpha * \mathrm{OPT}_v$
- Proof:

 $\mathbf{E}[W] = 2 \sum_{0 \le i < j \le n} a_{ij} \Pr[y_i = y_j] + b_{ij} \Pr[y_i \neq y_j]$ t θ_{ij} denote the angle between a_i and a_j

let θ_{ij} denote the angle between a_i and a_j

and $\begin{aligned} \Pr[y_i \neq y_j] &= \frac{\theta_{ij}}{\pi} \ge \frac{a}{2} \left(1 - \cos \theta_{ij}\right) \\ \Pr[y_i = y_j] &= 1 - \frac{\theta_{ij}}{\pi} \ge \frac{a}{2} \left(1 + \cos \theta_{ij}\right) \end{aligned}$ Therefore,

 $\mathbf{E}[W] \ge a \cdot \sum_{0 \le i < j \le n} a_{ij} \left(1 + \cos \theta_{ij}\right) + b_{ij} \left(1 - \cos \theta_{ij}\right) = a \cdot \mathrm{OPT}_{v}$

The END