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Introduction
 LP place a good lower bound on OPT for NP-hard 

problems
 Are there other ways of doing this?
 Vector programs provide another class of 

relaxations
 For problems expressed as strict quadratic 

programs
 Vector programs are equivalent to semidefinite

programs
 Semidefinite programs can be solved in time 

polynomial in n and log(1/ε)
 A 0.87856 factor algorithm for MAX-CUT
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The maximum cut problem

 MAX-CUT
 Given an undirected graph G=(V,E), with

edge weights w: E → Q+ , find a partition
of V so as to maximize the total

weight of edges in this cut, i.e., edges that
have one endpoint in S and one endpoint
in .
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Strict quadratic programs and 
vector programs (1)
 A quadratic program is the problem of optimizing 

a quadratic function of integer valued variables, 
subject to quadratic constraints on these variables.

 Strict quadratic program: monomials of degree 0 
or 2.

 Strict quadratic program for MAX-CUT:
yi an indicator variable for vertex υi with values +1 or -1.
Partition,
If υi and υj on opposite sides, then 
and edge contributes wij to objective function
On the other hand, edge makes no contribution.  
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Strict quadratic programs and 
vector programs (2)
 An optimal solution to this program is a 

maximum cut in G.
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Strict quadratic programs and 
vector programs (3)
 This program relaxes to a vector program
 A vector program is defined over n vector 

variables in Rn , say υ1 , υ2 , …, υn , and is 
the problem of optimizing a linear 
function of the inner products υi . υj for 
1 ≤ i ≤ j ≤ n , subject to linear constraints 
on these inner products 

 A vector program is obtained from a linear 
program by replacing each variable with 
an inner product of a pair of these vectors
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Strict quadratic programs and 
vector programs (4)
 A strict quadratic program over n integer 

variables defines a vector program over n
vector variables in Rn

 Establish a correspondence between the n
integer variables and the n vector 
variables, and replace each degree 2 term 
with the corresponding inner product 

 yi . yj is replaced with υi . υj
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Strict quadratic programs and 
vector programs (5)

 Vector program for MAX-CUT
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Strict quadratic programs and 
vector programs (6)
 Because of the constraint υi . υj =1, the vectors υ1

, υ2 , …, υn are constrained to lie on the n-
dimensional sphere Sn-1  

 Any feasible solution to the strict quadratic 
program of MAX-CUT yields a solution to the 
vector program

 The vector program corresponding to a strict 
quadratic program is a relaxation of the quadratic 
program providing an upper bound on OPT

 Vector programs are approximable to any desired 
degree of accuracy in polynomial time 

10

( ),0,...,0  is assigned to i iy υ



Properties of positive semidefinite
matrices (1)
 Let A be a real, symmetric n n matrix
 Then A has real eigenvalues and has n linearly 

independent eigenvectors
 A is positive semidefinite if

 Theorem 26.3 Let A be a real symmetric n n
matrix. Then the following are equivalent:
1. 
2.  All eigenvalues of A are nonnegative 
3. There is an n n real matrix W, such that 

A = WT W
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Properties of positive semidefinite
matrices (2)

12



Properties of positive semidefinite
matrices (3)

 With Cholesky decomposition a real symmetric 
matrix can be decomposed in polynomial time as 
A = UΛUT , where Λ is a diagonal matrix whose 
diagonal entries are the eigenvalues of A

 A is positive semidefinite if all the entries of Λ are 
nonnegative giving a polynomial time test for 
positive semidefiniteness

 The decomposition WWT  is not polynomial time 
computable, but can be approcimated

 The sum of two positive semidefinite matrices is 
also positive semidefinite

 Convex combination is also positive semidefinite
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The semidefinite programming 
problem (1)

 Let Y be an n n matrix of real valued variables 
with yij entry 

 The semidefinite programming problem is the 
problem of maximizing a linear function of the 
yij ’s, subject to linear constraints on them, and 
the additional constraint that Y be symmetric 
and positive semidefinite
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The semidefinite programming 
problem (2)
 Denote by Rn n the space of n n real 

matrices
 The trace of a matrix A is the sum of its 

diagonal entries and is denoted by tr(A) 
 The Frobenius inner product of matrices A, B

is defined to be

 Mn denotes the cone of symmetric n n real 
matrices

 For denotes that A is pos. sem.
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The semidefinite programming 
problem (3)

 The general semidefinite programming 
problem, S:
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The semidefinite programming 
problem (4)
 A matrix satisfying all the constraints is a 

feasible solution and so is any convex 
combination of these solutions

 Let A be an infeasible point. Let C be 
another point. A hyperplane
is called a seperating hyperplane for A if all 
feasible points satisfy it and point A does not

 Theorem 26.4 Let S be a semidefinite
programming  problem, and A be a point in 
Rn n . We can determine in polynomial time, 
whether A is feasible for S and, if it is not, 
find a separating hyperplane. 
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The semidefinite programming 
problem (4)
 Proof: Testing for feasibility involves ensuring 

that A is symmetric and positive semidefinite and 
satisfies all the constraints. This can be done in 
polynomial time. If A is infeasible, a separating 
hyperplane is obtained as follows.
◦ If A is not symmetric, αij > αji for some i,j. Then yij ≤ 

yji is a separating hyperplane
◦ If A is not positive semidefinite, then it has a negative 

eigenvalue, say λ, and υ the corresponding 
eigenvector. Then,

is a separating hyperplane.  
◦ If any of the linear constraints is violated, it directly 

yields a separating hyperplane
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The semidefinite programming 
problem (5)

 Let V be a vector program on n n-dimensional 
vector variables υ1 , υ2 , …, υn .

 Define the corresponding semidefinite program, 
S, over n2 variables yij , for 1 ≤ i,j ≤ n as follows:
◦ Replace each inner product υi . υj by the variable yij .
◦ Require that matrix Y is symmetric and positive 

semidefinite

 Lemma 26.5 Vector program V is 
equivalent to semidefinite program S
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The semidefinite programming 
problem (6)
 Proof: One must show that corresponding to each 

feasible solution to V, there is a feasible solution 
to S of the same objective function value and vice 
versa
◦ Let α1 ,…, αn be a feasible solution to V. Let W be the 

matrix whose columns are α1 ,…, αn
Then it is easy to see that A=WT W is a feasible 
solution to S having the same objective function value
◦ Let A be a feasible solution to S. By theorem 26.3 

there is a n n matrix W such that A=WT W. Let α1 ,…, 
αn be the columns of W. Then it is easy to see that α1
,…, αn is a feasible solution to V having the same 
objective function value
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The semidefinite programming 
problem (7)
 The semidefinite programming relaxation 

to MAX-CUT is:
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Randomized rounding algorithm (1)

 Assume we have an optimal solution to 
the vector program

 Let α1 ,…, αn be an optimal solution and 
let OPTυ denote its objective function 
value

 These vectors lie on the n-dimensional 
unit sphere Sn-1

 We need a cut whose weight is a 
large fraction of OPTυ
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Randomized rounding algorithm (2)

 Let θij denote the angle between vectors αi
and αj . The contribution of this pair of 
vectors to OPTυ is,

 The closer θij is to π, the larger the 
contribution will be

 Pick r to be a uniformly distributed vector 
on the unit sphere and let  
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Randomized rounding algorithm (3)

 Lemma 26.6 
◦ Pr[ υi and υj are separated]= θij /π

 Proof:
◦ Project r onto the plane containing αi and αj

◦ Now, vertices υi and υj will be separated iff the 
projection lies in one of the two arcs of angle 
θij . Since r has been picked from a spherically 
symmetric distribution, its projection will be a 
random direction in the plane. The lemma 
follows.   
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Randomized rounding algorithm (4)
 Lemma 26.7 Let x1 , …, xn be picked independently from 

the normal distribution with mean 0 and unit standard 
deviation. Let . 
Then,                             is a random vector on the unit 
sphere.

 Algorithm 26.8 (MAX-CUT)
1. Solve vector program V. Let α1 ,…, αn be an optimal   
solution.
2. Pick r to be a uniformly distributed vector on the unit 
sphere.
3. Let 
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Randomized rounding algorithm (5)

 Lemma 26.9 E[W] ≥ α*OPTυ

 Corollary 26.10   The integrality gap for 
vector relaxation is at least a>0.87856

 Theorem 26.11   There is a randomized 
approximation algorithm for MAX-CUT 
achieving an approximation factor of 
0.87856   
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Improving the guarantee for MAX-
2SAT (1)

 MAX-2SAT is the restriction of MAX-
SAT to formulae in which each clause 
contains at most two literals

 Already obtained a ¾ algorithm for that
 Semidefinite programming gives an 

improved algorithm
 Idea: convert the obvious quadratic 

program into a strict quadratic program
27



Improving the guarantee for MAX-
2SAT (2)
 To each Boolean variable xi introduce 

variable yi which is constrained to be 
either +1 or -1, for 1≤ i ≤ n. In addition 
introduce another variable y0 which is also 
constrained to be either +1 or -1. 

 xi is true if yi = y0 and false otherwise
 The value υ(C) of clause C is defined to 

be 1 if C is satisfied and 0 otherwise
 For clauses containing only one literal
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Improving the guarantee for MAX-
2SAT (3)
 For a clause with 2 literals
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Improving the guarantee for MAX-
2SAT (4)
 MAX-2SAT can be written as a strict 

quadratic program
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Improving the guarantee for MAX-
2SAT (5)
 Corresponding vector program relaxation 

where vector variable υi corresponds to yi
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Improving the guarantee for MAX-
2SAT (6)
 The algorithm is similar to that for MAX-

CUT
 Let α0 ,…, αn be an optimal solution. Pick 

a vector r uniformly distributed on the 
unit sphere in (n+1) dimensions and let 
yi = 1 iff

 This gives a truth assignment for the 
Boolean variables

 Let W be the random variable denoting the 
weight of this truth assignment 
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Improving the guarantee for MAX-
2SAT (7)
 Lemma 26.13 E[W] ≥ α * OPTυ
 Proof: 

let θij denote the angle between ai and aj

and

Therefore,
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The END
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