Approximation Algorithms
 Chapter 26

Semidefinite Programming

Zacharias Pitouras

Introduction

- LP place a good lower bound on OPT for NP-hard problems
- Are there other ways of doing this?
- Vector programs provide another class of relaxations
- For problems expressed as strict quadratic programs
- Vector programs are equivalent to semidefinite programs
- Semidefinite programs can be solved in time polynomial in n and $\log (1 / \varepsilon)$
- A 0.87856 factor algorithm for MAX-CUT

Contents

- Strict quadratic programs and vector programs
- Properties of positive semidefinite matrices
- The semidefinite programming problem
- Randomized rounding algorithm
- Improving the guarantee for MAX-2SAT
- Notes

The maximum cut problem

- MAX-CUT
- Given an undirected graph $G=(V, E)$, with edge weights $w: ~ E \rightarrow \mathbf{Q}^{+}$, find a partition (S, \bar{S}) of V so as to maximize the total weight of edges in this cut, i.e., edges that have one endpoint in S and one endpoint in \bar{S}.

Strict quadratic programs and vector programs (1)

- A quadratic program is the problem of optimizing a quadratic function of integer valued variables, subject to quadratic constraints on these variables.
- Strict quadratic program: monomials of degree 0 or 2.
- Strict quadratic program for MAX-CUT:
y_{i} an indicator variable for vertex v_{i} with values +1 or -1 .
Partition, $S=\left\{v_{i} \mid y_{i}=1\right\}, \bar{S}=\left\{v_{i} \mid y_{i}=-1\right\}$ If v_{i} and v_{j} on opposite sides, then $y_{i} y_{j}=-1$ and edge contributes $w_{i j}$ to objective function On the other hand, edge makes no contribution.

Strict quadratic programs and vector programs (2)

- An optimal solution to this program is a maximum cut in G.

$$
\begin{array}{lll}
\text { maximize } & \frac{1}{2} \sum_{1 \leq i<j \leq n} w_{i j}\left(1-y_{i} y_{j}\right) \\
\text { subject to } & y_{i}^{2}=1, & v_{i} \in V \\
& y_{i} \in \mathbf{Z}, & v_{i} \in V
\end{array}
$$

Strict quadratic programs and vector programs (3)

- This program relaxes to a vector program
- A vector program is defined over n vector variables in \mathbf{R}^{n}, say $v_{1}, v_{2}, \ldots, v_{n}$, and is the problem of optimizing a linear function of the inner products $v_{i} . v_{j}$ for $1 \leq i \leq j \leq n$, subject to linear constraints on these inner products
- A vector program is obtained from a linear program by replacing each variable with an inner product of a pair of these vectors

Strict quadratic programs and vector programs (4)

- A strict quadratic program over n integer variables defines a vector program over n vector variables in \mathbf{R}^{n}
- Establish a correspondence between the n integer variables and the n vector variables, and replace each degree 2 term with the corresponding inner product
- $y_{i} \cdot y_{j}$ is replaced with $v_{i} \cdot v_{j}$

Strict quadratic programs and vector programs (5)

- Vector program for MAX-CUT

$$
\begin{array}{lll}
\operatorname{maximize} & \frac{1}{2} \sum_{1 \leq i<j \leq n} w_{i j}\left(1-v_{i} v_{j}\right) & \\
\text { subject to } & v_{i} \cdot v_{i}=1, & v_{i} \in V \\
& v_{i} \in \mathbf{R}^{n}, & v_{i} \in V
\end{array}
$$

Strict quadratic programs and vector programs (6)

- Because of the constraint $v_{i} \cdot v_{j}=1$, the vectors v_{1} , v_{2}, \ldots, v_{n} are constrained to lie on the n dimensional sphere S_{n-1}
- Any feasible solution to the strict quadratic program of MAX-CUT yields a solution to the vector program
$\left(y_{i}, 0, \ldots, 0\right)$ is assigned to v_{i}
- The vector program corresponding to a strict quadratic program is a relaxation of the quadratic program providing an upper bound on OPT
- Vector programs are approximable to any desired degree of accuracy in polynomial time

Properties of positive semidefinite

 matrices (1)- Let \boldsymbol{A} be a real, symmetric n matrix
- Then \boldsymbol{A} has real eigenvalues and has n linearly independent eigenvectors
- \boldsymbol{A} is positive semidefinite if
$\forall x \in \mathbf{R}^{n}, x^{T} \boldsymbol{A} x \geq 0$
- Theorem 26.3 Let A be a real symmetric n n matrix. Then the following are equivalent:

1. $\forall x \in \mathbf{R}^{n}, x^{T} \mathbf{A} x \geq 0$
2. All eigenvalues of \mathbf{A} are nonnegative
3. There is an n n real matrix W, such that
$\boldsymbol{A}=\boldsymbol{W}^{T} \boldsymbol{W}$

Properties of positive semidefinite matrices (2)

Proof: $(1 \Rightarrow 2)$: Let λ be an eigenvalue of \boldsymbol{A}, and let \boldsymbol{v} be a corresponding eigenvector. Therefore, $\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}$. Pre-multiplying by \boldsymbol{v}^{T} we get $\boldsymbol{v}^{T} \boldsymbol{A} \boldsymbol{v}=$ $\lambda \boldsymbol{v}^{T} \boldsymbol{v}$. Now, by (1), $\boldsymbol{v}^{T} \boldsymbol{A} \boldsymbol{v} \geq 0$. Therefore, $\lambda \boldsymbol{v}^{T} \boldsymbol{v} \geq 0$. Since $\boldsymbol{v}^{T} \boldsymbol{v}>0, \lambda \geq 0$.
$(2 \Rightarrow 3)$: Let $\lambda_{1}, \ldots, \lambda_{n}$ be the n eigenvalues of \boldsymbol{A}, and $\boldsymbol{v}_{1}, \ldots, v_{n}$ be the corresponding complete collection of orthonormal eigenvectors. Let \mathbf{Q} be the matrix whose columns are v_{1}, \ldots, v_{n}, and $\boldsymbol{\Lambda}$ be the diagonal matrix with entries $\lambda_{1}, \ldots, \lambda_{n}$. Since for each $i, \boldsymbol{A} \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{i}$, we have $\boldsymbol{A} \mathbf{Q}=\mathbf{Q} \boldsymbol{\Lambda}$. Since \mathbf{Q} is orthogonal, i.e., $\mathbf{Q Q}^{T}=I$, we get that $\mathbf{Q}^{T}=\mathbf{Q}^{-1}$. Therefore,

$$
\boldsymbol{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{T} .
$$

Let \boldsymbol{D} be the diagonal matrix whose diagonal entries are the positive square roots of $\lambda_{1}, \ldots, \lambda_{n}$ (by (2), $\lambda_{1}, \ldots, \lambda_{n}$ are nonnegative, and thus their square roots are real). Then, $\Lambda=D D^{T}$. Substituting, we get

$$
\boldsymbol{A}=\mathbf{Q} \boldsymbol{D} \boldsymbol{D}^{T} \mathbf{Q}^{T}=(\mathbf{Q} D)(\mathbf{Q} \boldsymbol{D})^{T} .
$$

Now, (3) follows by letting $W=(\mathbf{Q D})^{T}$.
$(3 \Rightarrow 1)$: For any

$$
\boldsymbol{x} \in \mathrm{R}^{n}, \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{x}^{T} \boldsymbol{W}^{T} \boldsymbol{W} \boldsymbol{x}=(\boldsymbol{W} \boldsymbol{x})^{T}(\boldsymbol{W} \boldsymbol{x}) \geq 0 .
$$

Properties of positive semidefinite matrices (3)

- With Cholesky decomposition a real symmetric matrix can be decomposed in polynomial time as $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\boldsymbol{T}}$, where $\boldsymbol{\Lambda}$ is a diagonal matrix whose diagonal entries are the eigenvalues of \boldsymbol{A}
- \boldsymbol{A} is positive semidefinite if all the entries of $\boldsymbol{\Lambda}$ are nonnegative giving a polynomial time test for positive semidefiniteness
- The decomposition $W W^{T}$ is not polynomial time computable, but can be approcimated
- The sum of two positive semidefinite matrices is also positive semidefinite
- Convex combination is also positive semidefinite

The semidefinite programming problem (1)

- Let \boldsymbol{Y} be an $n n$ matrix of real valued variables with $y_{i j}$ entry
- The semidefinite programming problem is the problem of maximizing a linear function of the $y_{i j}$'s, subject to linear constraints on them, and the additional constraint that \boldsymbol{Y} be symmetric and positive semidefinite

The semidefinite programming

 problem (2)- Denote by \mathbf{R}^{n} n the space of $n n$ real matrices
- The trace of a matrix \boldsymbol{A} is the sum of its diagonal entries and is denoted by $\operatorname{tr}(\boldsymbol{A})$
- The Frobenius inner product of matrices $\boldsymbol{A}, \boldsymbol{B}$ is defined to be

$$
\boldsymbol{A} \bullet \boldsymbol{B}=\operatorname{tr}\left(\boldsymbol{A}^{T} \boldsymbol{B}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} b_{i j}
$$

- M_{n} denotes the cone of symmetric $n \quad n$ real matrices
- For $\boldsymbol{A} \in \boldsymbol{M}_{n}, \boldsymbol{A} \succeq 0$ denotes that \boldsymbol{A} is pos. sem.

The semidefinite programming problem (3)

- The general semidefinite programming problem, S:

$$
\begin{array}{ll}
\operatorname{maximize} & \boldsymbol{C} \bullet \boldsymbol{Y} \\
\text { subject to } & \boldsymbol{D}_{i} \bullet \boldsymbol{Y}=d_{i}, \quad 1 \leq i \leq k \\
& \boldsymbol{Y} \succeq 0, \\
& \boldsymbol{Y} \in M_{n}
\end{array}
$$

The semidefinite programming

 problem (4)- A matrix satisfying all the constraints is a feasible solution and so is any convex combination of these solutions
- Let \boldsymbol{A} be an infeasible point. Let \boldsymbol{C} be another point. A hyperplane $\boldsymbol{C} \bullet \boldsymbol{Y} \leq b$ is called a seperating hyperplane for \boldsymbol{A} if all feasible points satisfy it and point \boldsymbol{A} does not
- Theorem 26.4 Let S be a semidefinite programming problem, and A be a point in $\mathbf{R}^{n}{ }^{n}$. We can determine in polynomial time, whether A is feasible for S and, if it is not, find a separating hyperplane.

The semidefinite programming

problem (4)

- Proof: Testing for feasibility involves ensuring that \boldsymbol{A} is symmetric and positive semidefinite and satisfies all the constraints. This can be done in polynomial time. If \boldsymbol{A} is infeasible, a separating hyperplane is obtained as follows.
\circ If \boldsymbol{A} is not symmetric, $\alpha_{i j}>\alpha_{j i}$ for some i, j. Then $y_{i j} \leq$ $y_{j i}$ is a separating hyperplane
- If \boldsymbol{A} is not positive semidefinite, then it has a negative eigenvalue, say λ, and v the corresponding eigenvector. Then,
$\left(v v^{T}\right) \bullet \boldsymbol{Y}=v^{T} \mathbf{Y} v \geq 0$ is a separating hyperplane.
- If any of the linear constraints is violated, it directly yields a separating hyperplane

The semidefinite programming problem (5)

- Let V be a vector program on n-dimensional vector variables $v_{1}, v_{2}, \ldots, v_{n}$.
- Define the corresponding semidefinite program, S, over n^{2} variables $y_{i j}$, for $1 \leq i, j \leq n$ as follows:
- Replace each inner product $v_{i} \cdot v_{j}$ by the variable $y_{i j}$.
- Require that matrix \boldsymbol{Y} is symmetric and positive semidefinite
- Lemma 26.5 Vector program V is equivalent to semidefinite program S

The semidefinite programming

problem (6)

- Proof: One must show that corresponding to each feasible solution to V , there is a feasible solution to S of the same objective function value and vice versa
- Let $\alpha_{1}, \ldots, \alpha_{n}$ be a feasible solution to V. Let \boldsymbol{W} be the matrix whose columns are $\alpha_{1}, \ldots, \alpha_{n}$ Then it is easy to see that $\boldsymbol{A}=\boldsymbol{W}^{T} \boldsymbol{W}$ is a feasible solution to S having the same objective function value
- Let \boldsymbol{A} be a feasible solution to S. By theorem 26.3 there is a $n n$ matrix \boldsymbol{W} such that $\boldsymbol{A}=\boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{W}$. Let α_{1}, \ldots, α_{n} be the columns of \boldsymbol{W}. Then it is easy to see that α_{1} $, \ldots, \alpha_{n}$ is a feasible solution to V having the same objective function value

The semidefinite programming problem (7)

- The semidefinite programming relaxation to MAX-CUT is:

$$
\begin{array}{ll}
\text { maximize } & \frac{1}{2} \sum_{1 \leq i<j \leq n} w_{i j}\left(1-y_{i} y_{j}\right) \\
\text { subject to } & y_{i}^{2}=1, \quad v_{i} \in V \\
& \boldsymbol{Y} \succeq 0, \\
& \boldsymbol{Y} \in M_{n}
\end{array}
$$

Randomized rounding algorithm (1)

- Assume we have an optimal solution to the vector program
- Let $\alpha_{1}, \ldots, \alpha_{n}$ be an optimal solution and let OPT_{v} denote its objective function value
- These vectors lie on the n-dimensional unit sphere S_{n-1}
- We need a cut (S, \bar{S}) whose weight is a large fraction of OPT_{v}

Randomized rounding algorithm (2)

- Let $\theta_{i j}$ denote the angle between vectors α_{i} and α_{j}. The contribution of this pair of vectors to OPT_{v} is,

$$
\frac{w_{i j}}{2}\left(1-\cos \theta_{i j}\right)
$$

- The closer $\theta_{i j}$ is to π, the larger the contribution will be
- Pick \boldsymbol{r} to be a uniformly distributed vector on the unit sphere and let $S=\left\{v_{i} \mid a_{i} \cdot \boldsymbol{r} \geq 0\right\}$

Randomized rounding algorithm (3)

- Lemma 26.6
${ }^{\circ} \operatorname{Pr}\left[v_{i}\right.$ and v_{j} are separated $]=\theta_{i j} / \pi$
- Proof:
${ }^{\circ}$ Project \boldsymbol{r} onto the plane containing α_{i} and α_{j}
- Now, vertices v_{i} and v_{j} will be separated iff the projection lies in one of the two arcs of angle $\theta_{i j}$. Since \boldsymbol{r} has been picked from a spherically symmetric distribution, its projection will be a random direction in the plane. The lemma follows.

Randomized rounding algorithm (4)

- Lemma 26.7 Let x_{1}, \ldots, x_{n} be picked independently from the normal distribution with mean 0 and unit standard deviation. Let $d=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$. Then, $\left(x_{1} / d, \ldots, x_{n} / d\right)$ is a random vector on the unit sphere.
- Algorithm 26.8 (MAX-CUT)

1. Solve vector program V. Let $\alpha_{1}, \ldots, \alpha_{n}$ be an optimal solution.
2. Pick \boldsymbol{r} to be a uniformly distributed vector on the unit sphere.
3. Let $S=\left\{v_{i} \mid a_{i} \cdot \boldsymbol{r} \geq 0\right\}$

Randomized rounding algorithm (5)

- Lemma 26.9 $\mathrm{E}[W] \geq \alpha * \mathrm{OPT}_{v}$
- Corollary 26.10 The integrality gap for vector relaxation is at least $a>0.87856$
- Theorem 26.11 There is a randomized approximation algorithm for MAX-CUT achieving an approximation factor of 0.87856

Improving the guarantee for MAX2SAT (1)

- MAX-2SAT is the restriction of MAXSAT to formulae in which each clause contains at most two literals
- Already obtained a $3 / 4$ algorithm for that
- Semidefinite programming gives an improved algorithm
- Idea: convert the obvious quadratic program into a strict quadratic program

Improving the guarantee for MAX-

 2SAT (2)- To each Boolean variable x_{i} introduce variable y_{i} which is constrained to be either +1 or -1 , for $1 \leq i \leq n$. In addition introduce another variable y_{0} which is also constrained to be either +1 or -1 .
- x_{i} is true if $y_{i}=y_{0}$ and false otherwise
- The value $v(C)$ of clause C is defined to be 1 if C is satisfied and 0 otherwise
- For clauses containing only one literal

$$
v\left(x_{i}\right)=\frac{1+y_{0} y_{i}}{2} \text { and } v\left(\bar{x}_{i}\right)=\frac{1-y_{0} y_{i}}{2}
$$

Improving the guarantee for MAX2SAT (3)

- For a clause with 2 literals

$$
\begin{aligned}
v\left(x_{i} \vee x_{j}\right) & =1-v\left(\bar{x}_{i}\right) v\left(\bar{x}_{j}\right)=1-\frac{1-y_{0} y_{i}}{2} \frac{1-y_{0} y_{j}}{2} \\
& =\frac{1}{4}\left(3+y_{0} y_{i}+y_{0} y_{j}-y_{0}^{2} y_{i} y_{j}\right) \\
& =\frac{1+y_{0} y_{i}}{4}+\frac{1+y_{0} y_{j}}{4}+\frac{1-y_{i} y_{j}}{4}
\end{aligned}
$$

Improving the guarantee for MAX2SAT (4)

- MAX-2SAT can be written as a strict quadratic program
maximize

$$
\sum_{0 \leq i<j \leq n} \alpha_{i j}\left(1+y_{i} y_{j}\right)+b_{i j}\left(1-y_{i} y_{j}\right)
$$

subject to

$$
y_{i}^{2}=1
$$

$$
0 \leq i \leq n
$$

$$
y_{i} \in \mathbf{Z}
$$

$$
0 \leq i \leq n
$$

Improving the guarantee for MAX2SAT (5)

- Corresponding vector program relaxation where vector variable v_{i} corresponds to y_{i}

$$
\sum_{0 \leq i<j \leq n} \alpha_{i j}\left(1+v_{i} \cdot v_{j}\right)+b_{i j}\left(1-v_{i} \cdot v_{j}\right)
$$

$$
\begin{array}{lll}
\text { subject to } & v_{i} \cdot v_{j}=1, & 0 \leq i \leq n \\
& v_{i} \in \mathbf{R}^{n+1}, & 0 \leq i \leq n
\end{array}
$$

Improving the guarantee for MAX-

 2SAT (6)- The algorithm is similar to that for MAXCUT
- Let $\alpha_{0}, \ldots, \alpha_{n}$ be an optimal solution. Pick a vector \boldsymbol{r} uniformly distributed on the unit sphere in $(n+1)$ dimensions and let $y_{i}=1$ iff $r \cdot a_{i} \geq 0$ for $0 \leq i \leq n$
- This gives a truth assignment for the Boolean variables
- Let W be the random variable denoting the weight of this truth assignment

Improving the guarantee for MAX-

 2SAT (7)- Lemma 26.13 $\mathrm{E}[W] \geq \alpha^{*} \mathrm{OPT}_{v}$
- Proof:

$$
\mathbf{E}[W]=2 \sum_{0 \leq i<j \leq n} a_{i j} \operatorname{Pr}\left[y_{i}=y_{j}\right]+b_{i j} \operatorname{Pr}\left[y_{i} \neq y_{j}\right]
$$

let $\theta_{i j}$ denote the angle between a_{i} and a_{j}
and

$$
\begin{aligned}
& \operatorname{Pr}\left[y_{i} \neq y_{j}\right]=\frac{\theta_{i j}}{\pi} \geq \frac{a}{2}\left(1-\cos \theta_{i j}\right) \\
& \operatorname{Pr}\left[y_{i}=y_{j}\right]=1-\frac{\theta_{i j}}{\pi} \geq \frac{a}{2}\left(1+\cos \theta_{i j}\right)
\end{aligned}
$$

Therefore,

$$
\mathbf{E}[W] \geq a \cdot \sum_{0 \leq i<j \leq n} a_{i j}\left(1+\cos \theta_{i j}\right)+b_{i j}\left(1-\cos \theta_{i j}\right)=a \cdot \mathrm{OPT}_{v}
$$

The END

