Approximation Algorithms 2009 Petros Potikas

1

Definition: Let G=(V,E) be a complete undirected graph with edge costs satisfying the triangle inequality and k be an integer, $0 < k \le |V|$. For any $S \subseteq V$ and vertex $v \in V$, define *connect*(v,S) to be the cost of the cheapest edge from v to a vertex in S.

Goal: Find a set $S \subseteq V$, with |S| = k, so as to minimize $\max_{v} \{ \text{connect}(v, S) \}$.

Applications: Place k fire stations or warehouses.

Definition: Let G=(V,E) be a complete undirected graph with edge costs satisfying the triangle inequality and k be an integer, $0 < k \le |V|$. For any $S \subseteq V$ and vertex $v \in V$, define *connect*(v,S) to be the cost of the cheapest edge from v to a vertex in S.

Goal: Find a set $S \subseteq V$, with |S| = k, so as to minimize $\max_{v} \{ \text{connect}(v, S) \}$.

Applications: Place k fire stations or warehouses.

Results

- o NP-hard problem.
- Approximation algorithm with ratio 2.
- o Technique: parametric pruning.
- Generalization to a weighted variant.

Theorem 1: It is NP-hard to approximate the general k-center within factor a(n), for any computable function a(n).

Proof: Reduction from dominating set...

 \square

Technique: parametric pruning

Idea: prune irrelevant parts of the input

- Suppose OPT = t
- We want a 2-approximation algorithm
- Any edges of cost more than $2 \cdot t$ are useless: if two vertices are connected by such an edge and one of them gets is picked, then the other vertex is too far away
- We can remove expensive edges

We don't know OPT, but we guess.

Technique: parametric pruning

→ Order the edges by cost: $cost(e_1) \le cost(e_2) \le ... \le cost(e_m)$

> Let
$$G_i = (V, E_i)$$
, where $E_i = \{e_1, ..., e_i\}$

The k-center problem is equivalent to finding the minimal index i such that

 G_i has a dominating set of size $\leq k$

- > Let i^* be this minimal i
- > Then OPT= $cost(e_{i^*})$

This is still an NP-hard problem!

Dominating Set: Let H=(U,F) be an undirected graph. A subset $S \subseteq U$ is a dominating set if every vertex in U-S is adjacent to a vertex in S.

Goal: Find the minimum dominating set in *H*.

Dominating Set is NP-hard.

Independent Set: Let H=(U,F) be an undirected graph. A subset $S \subseteq U$ is an independent set if there is no edge in *H* having both ends in *S*.

Maximum Independent Set is NP-hard.

Powers of graphs

Let G=(V,E) be a graph. The square of G is the graph $G^2=(V,E')$, where $(u,v) \in E'$ if there is a path of length at most 2 between u and v in G (and $u \neq v$).

Generalization: G^t

Lemma 1: *Given a graph G, let I be an independent set in G*². *Then,* $|I| \le \text{dom}(G)$.

Proof:

Let *D* be a minimum dominating set in G(/D/=dom(G)).

Then G contains |D| stars spanning all vertices of G (the vertices of D are the centers of the stars).

A star in G becomes a clique in G^2 .

So G^2 contains |D| cliques spanning all vertices.

Independent set *I* can pick at most one vertex from each clique.

Algorithm 1 (Metric k-center)

We use that maximal independent sets can be found in polynomial time.

- 1. Construct $G_1^2, G_2^2, ..., G_m^2$.
- 2. Compute a maximal independent set, M_i , in each graph G_i^2 .
- 3. Find the smallest index *i*, such that $|M_i| \le k$, say *j*.
- 4. Return M_{i} .

Lemma 2: For *j* as defined in the above algorithm, $cost(e_j) \le OPT$.

Proof:

- For i < j, we have that $|M_i| > k$.
- By Lemma 1, $\operatorname{dom}(G_i) > k$.
- So, $i^* > i$.

Thus, $j \leq i^*$.

Theorem 2: Algorithm metric k-center achieves an approximation factor 2.

Proof:

- Any maximal independent set I in G_j^2 is also a dominating set (for, if some vertex u is not dominated by I, then $I \cup \{u\}$ is an independent set, contradicting I's maximality).
- In G_j^2 we have $|M_j|$ stars centered on the vertices in M_j .
- These stars cover all the vertices.
- Each edge used in constructing these stars has cost at most $2 \cdot \text{cost}(e_j) \le 2 \cdot \text{OPT}$ (by Lemma 2).

Tight example:

n+1 vertices

thick edges have cost 1, all edges incident to the center
thin edges have cost 2, the rest of the edges (not all edges of cost 2 are
shown)

For k = 1, OPT = 1, the center of the wheel The algorithm will compute j=n, G_n^2 is a clique, and if a peripheral vertex is chosen, then cost is 2.

Theorem 3: If $P \neq NP$, no approximation algorithm gives a $(2-\varepsilon)$ -approximation for $\varepsilon > 0$.

Proof:

Reduction from dominating set to the metric k-center problem. Let G = (V,E), k be an instance of the dominating set problem. We define the complete graph G' = (V,E'), where

> cost(u,v)=1, if $(u,v) \in E$ cost(u,v)=2, if $(u,v) \notin E$

G' satisfies the triangle inequality.

Theorem 3: If $P \neq NP$, no approximation algorithm gives a $(2-\varepsilon)$ -approximation for $\varepsilon > 0$.

Proof(cont'd):

Suppose *G* has a dominating set of size at most *k*. Then *G*' has a k-center of cost 1 \rightarrow a (2- ϵ)-approximation algorithm delivers one with cost < 2.

If there is no such dominating set in *G*, every k-center has $\cos t \ge 2 > 2-\varepsilon$.

Thus, a $(2-\varepsilon)$ -approximation algorithm for the k-center problem can be used to determine whether or not there is a dominating set of size *k*. \Box

- **Definition:** Let G=(V,E) be a complete undirected graph with edge costs satisfying the triangle inequality, with weights on vertices and a bound $W \in R^+$. For any $S \subseteq V$ and vertex $v \in V$, define connect(v,S) to be the cost of the cheapest edge from v to a vertex in S.
- *Goal*: Find a set $S \subseteq V$, with total weight at most W, so as to minimize $\max_{v} \{ \text{connect}(v, S) \}$.

Applications: Place fire stations or warehouses, given a budget.

- \succ We use the same graphs G_1, G_2, \dots, G_m
- > Let wdom(G) be the weight of a minimum weight dominating set in G
- Find the minimal index *i* such that $wdom(G_i) \le W$
- > Let i^* be this minimal i
- > Then OPT=cost(e_{i^*})

- Let *I* be an independent set in G^2
- For any vertex *u*, let *s*(*u*) denote its lightest neighbor of *u*
- We also consider *u* to be a neighbor of itself
- Let $S = \{s(u) \mid u \in I\}$
- We claim $w(S) \leq wdom(G)$

Lemma 3: $w(S) \leq wdom(G)$

Proof:

Let *D* be a minimum weight dominating set in G(w(D)=wdom(G)). Then *G* contains |D| stars spanning all vertices of *G* (the vertices of *D* are the centers of the stars).

A star in G becomes a clique in G^2 .

So G^2 contains |D| cliques spanning all vertices.

Independent set *I* can pick at most one vertex from each clique. Each vertex in *I* has the center of the corresponding star available as a neighbor in *G* (this might not be the lightest neighbor). Thus, $w(S) \leq wdom(G)$.

Algorithm 2 (Weighted k-center)

Let $s_i(u)$ denote the lightest neighbor of u in G_i .

- 1. Construct $G_1^2, G_2^2, ..., G_m^2$
- 2. Compute a maximal independent set, M_i , in each graph G_i^2
- 3. Compute $S_i = \{s_i(u) \mid u \in M_i\}$
- 4. Find the smallest index *i*, such that $w(S_i) \le W$, say *j*
- 5. Return S_i

Theorem 2: This algorithm achieves a 3-approximation.

Proof:

OPT $\geq \operatorname{cost}(e_j)$ (as Lemma 2) M_j is a dominating set in G_j^2 We can cover V with stars of G_j^2 centered in vertices of M_j These stars use edges of cost at most $2 \cdot \operatorname{cost}(e_j)$

Theorem 2: This algorithm achieves a 3-approximation.

Proof (cont'd):

Each star center is adjacent to a vertex in S_j , using an edge of cost at most $cost(e_j)$

Move each center of these stars to the adjacent vertex in S_j and redefine the star

Every vertex in G_i , can be reached by a cost at most $3 \cdot \text{cost}(e_i)$

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / k-center

Tight example:

n+4 vertices, W=3

All edges not shown have cost equal to the cost of the shortest path in the graph shown.

 $OPT = 1 + \epsilon (\{a, c\})$

For any *i*<*n*+3, set G_i is missing at least one edge of cost 1+ ε .

One vertex will be isolated (also in G_i^2) so it will be in S_i .

For i=n+3, $\{b\}$ is a maximal independent set. If the algorithm chooses $\{b\}$, then the center of the star will be $S_{n+3}=\{a\}$, with cost=3.

Related problem

Metric k-cluster: Let G=(V,E) be a complete undirected graph with edge costs satisfying the triangle inequality and k be an integer, $0 \le k \le |V|$.

Goal: Partition V into sets $V_1, V_2, ..., V_k$, so as to minimize the costliest edge between two vertices in the same set, i.e. minimize $max_{1 \le i \le k} u, v \in Vi} cost(u, v)$