
. . . . . .

.

De�nitions

. . . .

LP

. .

Primal-Dual Algorithm

. . . .

Analysis

Approximation Algorithms

Facility Location

vissarion �sikopoulos

June 18, 2009

Approximation Algorithms Facility Location



. . . . . .

.

De�nitions

. . . .

LP

. .

Primal-Dual Algorithm

. . . .

Analysis

The Problem

Problem De�nition

.

.

Metric uncapacitated facility location
◮ G: bipartite graph with bipartition (F, C)
◮ F: facilities, C: cities
◮ fi: the cost of opening facility i
◮ cij: the cost of connecting city j to (opened) facility i
◮ the connection costs satisfy the triangle inequality

the problem is to �nd:

1. a subset I ⊆ F of facilities that should be opened

2. a function φ : C → I assigning cities to open facilities

s.t. minimize the total cost of opening facilities

and connecting cities to open facilities
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The Integer Program

The Integer Program

yi: 1: facility i is open, 0: otherwise

xij 1: city j is connected to the facility i, 0:otherwise

minimize ∑
i∈F,j∈C

cijxij +
∑
i∈F

fiyi

subject to ∑
i∈F

xij ≥ 1 j ∈ C (1)

yi − xij ≥ 0 i ∈ F, j ∈ C (2)

xij ∈ {0, 1} i ∈ F, j ∈ C (3)

yi ∈ {0, 1} i ∈ F (4)

◮ (1) each city is connected to at least one facility
◮ (2) facilities connected with cities must be open
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LP-relaxation and Dual Program

LP-relaxation and Dual Program

minimize∑
i∈F,j∈C

cijxij +
∑
i∈F

fiyi

subject to∑
i∈F

xij ≥ 1 j ∈ C

yi − xij ≥ 0 i ∈ F, j ∈ C
xij ≥ 0 i ∈ F, j ∈ C
yi ≥ 0 i ∈ F

maximize ∑
j∈C

aj

subject to

aj − βij ≤ cij i ∈ F, j ∈ C∑
j∈C
βij ≤ fi i ∈ F

aj ≥ 0 j ∈ C
βij ≥ 0 i ∈ F, j ∈ C
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Understanding the Dual: Slackness Conditions

Understanding the Dual

Slackness Conditions

optimal integral solution (I, φ) with conditions:

◮ yi = 1⇔ i ∈ I
◮ xij = 1⇔ i = φ(j)

primal slackness conditions:

i. ∀i ∈ F, j ∈ C : xij > 0⇒ aj − βij = cij a: total price of cities

ii. ∀i ∈ F : yi > 0⇒ ∑j∈C βij = fi each opened facility must fully paid for

dual slackness conditions:

iii. ∀j ∈ C : aj > 0⇒ ∑i∈F xij = 1 each city connected to exactly 1 facility

iv. ∀i ∈ F, j ∈ C : βij > 0⇒ yi = xij a city contribute only to the connected

facility

Note: from weak duality theorem proof must be: xij = 0 ∨ aj − βij = cij
etc. . .
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Understanding the Dual and Relaxation

Understanding the Dual

aj = βij + cij: total price of city j

◮ cij goes towards the use of edge (i, j)

◮ βij is the contribution of j towards opening facility i

(from ii if i ∈ I then ∑j:φ(j)=i βij = fi)

Relaxing primal complementary slackness conditions

i ∀i ∈ F, j ∈ C : 1

3
cφ(j)j ≤ aj − βij ≤ cφ(j)j

ii ∀i ∈ F : 1

3
fi ≤
∑

j∈C βij ≤ fi

. . . we can relax in a way that dual must pay completely for open facilities

Solution:

◮ partition the cities into directly connected (βij > 0 ∨ βij = 0) and

indirectly connected (βij = 0)

◮ relax only the indirectly connected cities

i.e. 1

3
cφ(j)j ≤ aj ≤ cφ(j)j (becuase βij = 0)
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Algorithm: Phase 1

% Initialization

time = 0

∀i, j (cityj = unconnected, facilityi = closed,
aj = 0, bij = 0)

% Phase 1

while (∃j, cityj = unconnected) do ∀j :

if cityj = unconnected then aj = aj + 1

if aj = cij then (i,j) is tight

if (i, j) is tight && aj − βij ≤ cij then βij = βij + 1
if βij > 0 then (i,j) is special

if
∑

j∈C βij = fi then facilityi = temporarily open
if cityj = unconnected

&& facilityi= temporarily open && (i,j) is tight

then

facilityi is the connected witness of city j

cityi = connected; βij = 0
time = time + 1
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Algorithm: Phase 2

% Phase 2

Ft = {temporarily open facilities}
T = (V′, E′), E′={e ∈ E| e is special}
T2 = (V′′, E′′), E′′={e=(u,v) ∈ E′| |path(u,v)∈T|≤2}
H: subgraph of T2 induced on Ft
find a maximal independent set I in H

each facility in I is declared open

for each city j:

Fj = {i ∈ Ft | (i, j) is special}
if (∃i, facilityi ∈ Fj) then
φ(j) = i; cityj = directly connected (βij > 0)

else let i′ the connecting witness for j, (i′, j) is tight
if (i′ ∈ I) then

φ(j) = i′; cityj = directly connected (βij = 0)

else

let i′′ be a any neighbour of i′ in H
φ(j) = i′′; cityj = indirectly connected (βij = 0)
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De�nitions

aj = a
f

j
+ ae

j
, a

f

j
: opening facilities, ae

j
: connecting cities to facilities

◮ directly connected: aj = cij + βij, a
f

j
= βij, ae

j
= cij

◮ indirectly connected: a
f

j
= 0 and aj = ae

j

Lemma
Let i ∈ I. Then ∑

j:φ(j)=i

a
f

j
= fi

Proof Sketch

◮ i temporarily open, i.e.
∑

j:(i,j) is special βij = fi (Phase 1)
◮ each city j that has contributed to fi must be directly connected to i

(a
f

j
= βij)

◮ for any other connected city a
f

j′ = 0
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Corollary ∑
i∈I

fi =
∑
j∈C

a
f

j

Lemma
For an indirectly connected city j, cij ≤ 3ae

j
, where i = φ(j).

Theorem ∑
i∈F, j∈C

cijxij + 3
∑
i∈F

fiyi ≤ 3
∑
j∈C

aj

Proof Sketch

◮ for a directly connected city j, cij = ae
j
≤ 3ae

j
, where φ(j) = i

◮ previous lemma

◮ corollary
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Implementation

nc = |C|, nf = |F|, n = nc + nf , m = nc × nf

∀ facility i:

◮ number of cities currently contributing (init: 0)

◮ anticipated time ti: completely paid for if no other event happens

(init: in�nite)

binary heap for ti: minimum: O(1), update: O(log nf )

Events:

◮ edge (i, j) goes tight
◮ i not temporarily open: 1. numofcities(i)++; 2. recompute ti and

update heap;
◮ i already temporarily open: 1. j connected;

for each i′ counting j: 2. numofcities(i′)−−;
3. recompute ti and update heap;

◮ facility i completely paid for: 1. i temporarily open 2. all cities

contributing to i connected 3. steps 2,3 from previous event 2nd case
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Running Time

Theorem
The algorithm achieves approximation factor 3 for the facility location

problem and has running time O(m log nf ).

Tight Example

.

f1 = ɛ, f2 = (n + 1)ɛ

◮ OPT = (n + 1)ɛ + n

◮ SOL = ɛ + 1 + 3(n − 1)
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