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Outline
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- The concepts of Nash and ε-Nash equilibrium

Computing approximate Nash equilibria
- A subexponential algorithm for any constant ε > 0
- Polynomial time approximation algorithms
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What is Game Theory?

• Game Theory aims to help us understand 
situations in which decision makers interact

• Goals:
– Mathematical models for capturing the properties of 

such interactions
– Prediction (given a model how should/would a rational 

agent act?)

Rational agent: when given a choice, the agent always 
chooses the option that yields the highest utility
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Models of Games

• Cooperative or noncooperative

• Simultaneous moves or sequential

• Finite or infinite

• Complete information or incomplete information
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In this talk:

• Cooperative or noncooperative

• Simultaneous moves or sequential

• Finite or infinite

• Complete information or incomplete information
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Noncooperative Games in Normal Form

2, 2 0, 4

4, 0 -1, -1

Row 

player

Column PlayerThe Hawk-Dove 
game
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Example 2: The Bach or Stravinsky 
game (BoS)

2, 1 0, 0

0, 0 1, 2
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Example 3: A Routing Game

● ●s tB: 7.5x

A: 5x

C: 10x
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Example 3: A Routing Game

10, 10 5, 7.5 5, 10

7.5, 5 15, 15 7.5, 10

10, 7.510, 5 20, 20

A B C

A

B

C
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Definitions
• 2-player game (R, C): 

• n available pure strategies for each player

• n x n payoff matrices R, C

• i, j played ⇒ payoffs : Rij , Cij

• Mixed strategy: Probability distribution over [n]

• Expected payoffs :
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Solution Concept

x*, y* is a Nash equilibrium if no player has a unilateral 
incentive to deviate:

(x, Ry*) ≤ (x*, Ry*)  ∀ x

(x*, Cy) ≤ (x*, Cy*)  ∀ y

[Nash, 1951]: Every finite game has a mixed strategy 
equilibrium.

Proof: Based on Brouwer’s fixed point theorem.

(think of it as a steady state)
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Solution Concept

x*, y* is a Nash equilibrium if no player has a unilateral 
incentive to deviate to a pure strategy:

(xi, Ry*) ≤ (x*, Ry*)  ∀ xi

(x*, Cyj) ≤ (x*, Cy*)  ∀ yj

It suffices to consider only deviations to pure strategies

Let xi = (0, 0,…,1, 0,…,0) be the ith pure strategy
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Example: The Hawk-Dove Game

2, 2 0, 4

4, 0 -1, -1

Row 

player

Column Player
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Example 2: The Bach or Stravinsky 
game (BoS)

2, 1 0, 0

0, 0 1, 2

3 equilibrium points:

1. (B, B)

2. (S, S)

3. ((2/3, 1/3), (1/3, 2/3))
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Complexity issues
m = 2 players, known algorithms: worst case exponential time   
[Kuhn ’61, Lemke, Howson ’64, Mangasarian ’64, Lemke ’65]

If NP-hard ⇒ NP = co-NP [Megiddo, Papadimitriou ’89]
NP-hard if we add more constraints (e.g. maximize sum of payoffs) 
[Gilboa, Zemel ’89, Conitzer, Sandholm ’03]

Representation problems
m = 3, there exist games with rational data BUT irrational equilibria
[Nash ’51]

PPAD-complete even for m = 2                                          
[Daskalakis, Goldberg, Papadimitriou ’06, Chen, Deng, Teng ’06]             
Poly-time equivalent to:

finding approximate fixed points of continuous maps on convex and 
compact domains 
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Approximate Nash Equilibria

• Recall definition of Nash eq. :

(x, Ry*) ≤ (x*, Ry*)  ∀ x

(x*, Cy) ≤ (x*, Cy*)  ∀ y

• ε-Nash equilibria (incentive to deviate ≤ ε) :

(x, Ry*) ≤ (x*, Ry*) + ε ∀ x

(x*, Cy) ≤ (x*, Cy*) + ε ∀ y

Normalization: entries of R, C in [0,1]
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Searching for Approximate Equilibria

[Lipton, M., Mehta ’03]: For any ε in (0,1), and for every 
k ≥ 9logn/ε2, there exists a pair of k-uniform strategies x, y
that form an ε-Nash equilibrium.

Definition: A k-uniform strategy is a strategy where all 
probabilities are integer multiples of 1/k

e.g.  (3/k, 0, 0, 1/k, 5/k, 0,…, 6/k)
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A Subexponential Algorithm (Quasi-PTAS) 

[Lipton, M., Mehta ’03]: For any ε in (0,1), and for every 
k ≥ 9logn/ε2, there exists a pair of k-uniform strategies x, y
that form an ε-Nash equilibrium.

Definition: A k-uniform strategy is a strategy where all 
probabilities are integer multiples of 1/k

e.g.  (3/k, 0, 0, 1/k, 5/k, 0,…, 6/k)

Corollary : We can compute an ε-Nash equilibrium in  
time

Proof: There are nO(k) pairs of strategies to look at. 
Verify ε-equilibrium condition.
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Proof of Existence

Let x*, y* be a Nash equilibrium. 

- Sample k times from the set of pure strategies of 
the row player, independently, at random, according 
to x* ⇒ k-uniform strategy x

- Same for column player   ⇒ k-uniform strategy y

Based on the probabilistic method (sampling)

Suffices to show Pr[x, y form an ε-Nash eq.] > 0
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Proof (cont’d)
Enough to consider deviations to pure strategies

(xi, Ry) ≤ (x, Ry) + ε ∀i

(xi, Ry): sum of k random variables with mean (xi, Ry*) 

Chernoff-Hoeffding bounds ⇒ (xi, Ry) ≈ (xi, Ry*) with 
high probability

(xi, Ry) ≈ (xi, Ry*) ≤ (x*, Ry*) ≈ (x, Ry)

Finally when k = Ω(logn/ε2) :

Pr[∃ deviation with gain more than ε] = 
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Multi-player Games

For m players, same technique: 

support size:  k = O(m2 log(m2 n)/ε2)

running time: exp(logn, m, 1/ε)

Previously [Scarf ’67]: exp(n, m, log(1/ε))
(fixed point approximation)

[Lipton, M. ’04]: exp(n, m) but poly(log(1/ε))
(using algorithms for polynomial equations)
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Polynomial Time Approximation 
Algorithms

For ε = 1/2:

Feder, Nazerzadeh, Saberi ’07: For ε < 1/2, we need 
support at least Ω(log n)

i

k

j

• Pick arbitrary row i

• Let j = best response to i

• Find k = best response to j, 
play i or k with prob. 1/2

Rij, Cij

Rkj, Ckj
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Polynomial Time Approximation 
Algorithms

Daskalakis, Mehta, Papadimitriou (EC ’07):
in P for ε = 1-1/φ = (3-√5)/2 ≈ 0.382 (φ = golden ratio) 

Bosse, Byrka, M. (WINE ’07): a different LP-based method

1. Algorithm 1: 1-1/φ
2. Algorithm 2: 0.364 

- Βased on sampling + Linear Programming

- Need to solve polynomial number of linear programs

Running time: need to solve one linear program
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Approach

Fact: 0-sum games can be solved in polynomial time 
(equivalent to linear programming)

- Start with an equilibrium of the 0-sum 
game (R-C, C-R)

- If incentives to deviate are “high”, players 
take turns and adjust their strategies via best 
response moves

0-sum games: games of the form (R, -R)

Similar idea used in [Kontogiannis, Spirakis ’07]
for a different notion of approximation
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Algorithm 1

1. Find an equilibrium x*, y* of the 0-sum game (R - C, C - R)

2. Let g1, g2 be the incentives to deviate for row and column 
player respectively. Suppose g1 ≥ g2

3. If g1≤ α, output x*, y*

4. Else: let b1 = best response to y*, b2 = best response to b1

5. Output:

x = b1

y = (1 - δ2) y* + δ2 b2

Theorem: Algorithm 1 with α = 1-1/φ and δ2 = (1- g1) / (2- g1) 
achieves a (1-1/φ)-approximation

Parameters: α, δ2 ∈ [0,1]
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Analysis of Algorithm 1
Why start with an equilibrium of (R - C, C - R)?

Intuition: If row player profits from a deviation from x* then 
column player also gains at least as much

Case 1: g1 ≤ α ⇒ α-approximation

Case 2: g1  > α

for row player ≤ δ2

for column player ≤ (1 - δ2)(1 - (b1, Cy*))

≤ (1 - δ2)(1 - g1) = (1 - g1) / (2 - g1)
⇒ max{α, (1 - α)/(2 - α)}-approximation

Incentive to deviate:
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Analysis of Algorithm 1
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Towards a better algorithm
1. Find an equilibrium x*, y* of the 0-sum game (R - C, C - R)

2. Let g1, g2 be the incentives to deviate for row and column 
player respectively. Suppose g1 ≥ g2

3. If g1≤ α, output x*, y*

4. Else: let b1 = best response to y*, b2 = best response to b1

5. Output:

x = b1

y = (1 - δ2) y* + δ2 b2
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Algorithm 2
1. Find an equilibrium x*, y* of the 0-sum game (R - C, C - R)

2. Let g1, g2 be the incentives to deviate for row and column 
player respectively. Suppose g1 ≥ g2

3. If g1 ∈ [0, 1/3], output x*, y*

4. If g1 ∈ (1/3, β],

- let r1 = best response to y*, x = (1 - δ1) x* + δ1 r1

- let b2 = best response to x, y = (1 - δ2) y* + δ2 b2

5. If g1 ∈ (β, 1] output:

x = r1

y = (1 - δ2) y* + δ2 b2
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Analysis of Algorithm 2
(Reducing to an optimization question)

- Let h = (x*, Cb2) - (x*, Cy*) 

Theorem: The approximation guarantee of Algorithm 2 is 
0.364 and is given by:

- We set δ2 so as to equalize the incentives of the players to 
deviate
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Analysis of Algorithm 2 (solution)

Optimization yields:



34

Graphically:
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Analysis – tight example

0, 0 α, α α, α

α, α 0, 1 1, 1/2

α, α 1, 1/2 0, 1

(R, C) =

α =
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Remarks and Open Problems

• Spirakis, Tsaknakis (WINE ’07): currently best 
approximation of 0.339
– yet another LP-based method

• Polynomial Time Approximation Scheme (PTAS)? 
Yes if:

– rank(R) = O(1) & rank(C) = O(1) [Lipton, M. Mehta ’03]
– rank(R+C) = O(1) [Kannan, Theobald ’06]

• PPAD-complete for ε = 1/n [Chen, Deng, Teng ’06]
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Other Notions of Approximation

• ε-well-supported equilibria: every strategy in the 
support is an approximate best response
– [Kontogiannis, Spirakis ’07]: 0.658-approximation, based 

also on solving 0-sum games

• Strong approximation: output is geometrically close 
to an exact Nash equilibrium 
– [Etessami, Yannakakis ’07]: mostly negative results
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Thank You!
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