Algorithms for Computing Approximate Nash Equilibria

Vangelis Markakis

Athens University of Economics and Business

Outline

□ Introduction to Games

- The concepts of Nash and ε-Nash equilibrium

□ Computing approximate Nash equilibria

- A subexponential algorithm for any constant $\varepsilon > 0$
- Polynomial time approximation algorithms

Conclusions

What is Game Theory?

- Game Theory aims to help us understand situations in which *decision makers* interact
- Goals:
 - Mathematical models for capturing the properties of such interactions
 - Prediction (given a model how should/would a *rational agent* act?)

Rational agent: when given a choice, the agent always chooses the option that yields the highest utility

Models of Games

- Cooperative or noncooperative
- Simultaneous moves or sequential
- Finite or infinite
- Complete information or incomplete information

In this talk:

Cooperative or noncooperative

• Simultaneous moves or sequential

• Complete information or incomplete information

Noncooperative Games in Normal Form

The Hawk-Dove game

Column Player

2, 2

4, 0

Row

player

<mark>0, 4</mark>
-1, -1

6

Example 2: The Bach or Stravinsky game (BoS)

Example 3: A Routing Game

Example 3: A Routing Game

	А	В	С
A	10, 10	5, 7.5	5, 10
В	7.5, 5	15, 15	7.5, 10
С	10, 5	10, 7.5	20, 20

Definitions

- 2-player game (*R*, *C*):
 - *n* available *pure strategies* for each player
 - $n \ge n$ payoff matrices R, C
 - *i*, *j* played \Rightarrow payoffs : *Rij* , *Cij*
- Mixed strategy: Probability distribution over [*n*]

$$x = (x_1, ..., x_n), \quad \sum x_i = 1, \ x_i \ge 0$$

• Expected payoffs : (x, Ry) and (x, Cy)

$$(x, Ry) = \sum_{i,j} x_i y_j R_{ij}$$

Solution Concept

 x^* , y^* is a Nash equilibrium if no player has a unilateral incentive to deviate:

 $(x, Ry^*) \le (x^*, Ry^*) \quad \forall x$ $(x^*, Cy) \le (x^*, Cy^*) \quad \forall y$

[Nash, 1951]: Every finite game has a mixed strategy equilibrium.

(think of it as a steady state)

Proof: Based on Brouwer's fixed point theorem.

Solution Concept

 x^* , y^* is a Nash equilibrium if no player has a unilateral incentive to deviate:

 $(x, Ry^*) \le (x^*, Ry^*) \quad \forall x$ $(x^*, Cy) \le (x^*, Cy^*) \quad \forall y$

[Nash, 1951]: Every finite game has a mixed strategy equilibrium.

(think of it as a steady state)

Proof: Based on Brouwer's fixed point theorem.

Solution Concept

It suffices to consider only deviations to *pure strategies*

Let $x^i = (0, 0, ..., 1, 0, ..., 0)$ be the *i*th pure strategy

 x^* , y^* is a Nash equilibrium if no player has a unilateral incentive to deviate to a pure strategy:

 $(x^{i}, Ry^{*}) \leq (x^{*}, Ry^{*}) \ \forall x^{i}$ $(x^{*}, Cy^{j}) \leq (x^{*}, Cy^{*}) \ \forall y^{j}$

Example: The Hawk-Dove Game

Column Player

Example 2: The Bach or Stravinsky game (BoS)

2, 1	0, 0
<mark>0, 0</mark>	1, 2

3 equilibrium points:

- 1. (B, B)
- 2. (S, S)
- 3. ((2/3, 1/3), (1/3, 2/3))

Complexity issues

- m = 2 players, known algorithms: worst case exponential time [Kuhn '61, Lemke, Howson '64, Mangasarian '64, Lemke '65]
- If NP-hard \Rightarrow NP = co-NP [Megiddo, Papadimitriou '89]
- NP-hard if we add more constraints (e.g. maximize sum of payoffs) [Gilboa, Zemel '89, Conitzer, Sandholm '03]
- Representation problems

m = 3, there exist games with rational data BUT irrational equilibria [Nash '51]

- PPAD-complete even for m = 2
 [Daskalakis, Goldberg, Papadimitriou '06, Chen, Deng, Teng '06]
 Poly-time equivalent to:
 - finding approximate fixed points of continuous maps on convex and compact domains

Approximate Nash Equilibria

• Recall definition of Nash eq. :

 $(x, Ry^*) \le (x^*, Ry^*) \quad \forall x$ $(x^*, Cy) \le (x^*, Cy^*) \quad \forall y$

• ε -Nash equilibria (incentive to deviate $\leq \varepsilon$):

$$(x, Ry^*) \le (x^*, Ry^*) + \varepsilon \ \forall x$$
$$(x^*, Cy) \le (x^*, Cy^*) + \varepsilon \ \forall y$$

Normalization: entries of *R*, *C* in [0,1]

Searching for Approximate Equilibria

Definition: A *k*-uniform strategy is a strategy where all probabilities are integer multiples of 1/k

e.g. (3/k, 0, 0, 1/k, 5/k, 0,..., 6/k)

[Lipton, M., Mehta '03]: For any ε in (0,1), and for every $k \ge 9logn/\varepsilon^2$, there exists a pair of *k*-uniform strategies *x*, *y* that form an ε -Nash equilibrium.

A Subexponential Algorithm (Quasi-PTAS)

Definition: A *k***-uniform strategy** is a strategy where all probabilities are integer multiples of 1/k

e.g. (3/k, 0, 0, 1/k, 5/k, 0,..., 6/k)

[Lipton, M., Mehta '03]: For any ε in (0,1), and for every $k \ge 9logn/\varepsilon^2$, there exists a pair of *k*-uniform strategies *x*, *y* that form an ε -Nash equilibrium.

Corollary : We can compute an ε -Nash equilibrium in time $n^{O(\log n/\epsilon^2)}$

Proof: There are $n^{O(k)}$ pairs of strategies to look at. Verify ε -equilibrium condition.

Proof of Existence

Based on the probabilistic method (sampling)

Let x^* , y^* be a Nash equilibrium.

- Sample *k* times from the set of pure strategies of the row player, independently, at random, according to $x^* \implies k$ -uniform strategy *x*

- Same for column player \Rightarrow *k*-uniform strategy *y*

Suffices to show $\Pr[x, y \text{ form an } \epsilon\text{-Nash eq.}] > 0$

Proof (cont'd)

Enough to consider deviations to pure strategies

$$(x^i, Ry) \leq (x, Ry) + \varepsilon \quad \forall i$$

 (x^i, Ry) : sum of k random variables with mean (x^i, Ry^*)

Chernoff-Hoeffding bounds \Rightarrow (x^i , Ry) \approx (x^i , Ry^*) with high probability

$$(x^i, Ry) \approx (x^i, Ry^*) \leq (x^*, Ry^*) \approx (x, Ry)$$

Finally when $k = \Omega(\log n/\varepsilon^2)$:

Pr[\exists deviation with gain more than \mathcal{E}] = $O(n)e^{-k\epsilon^2/8} < 1_{21}$

Multi-player Games

For *m* players, same technique:

support size: $k = O(m^2 \log(m^2 n)/\varepsilon^2)$ running time: $\exp(\log n, m, 1/\varepsilon)$

Previously [Scarf '67]: $\exp(n, m, \log(1/\varepsilon))$ (fixed point approximation)

[Lipton, M. '04]: $\exp(n, m)$ but $\operatorname{poly}(\log(1/\varepsilon))$ (using algorithms for polynomial equations)

Outline

□ Introduction to Games

- The concepts of Nash and ε-Nash equilibrium
- □ Computing approximate Nash equilibria
 - A subexponential algorithm for any constant $\varepsilon > 0$
 - Polynomial time approximation algorithms

Conclusions

Polynomial Time Approximation Algorithms

For $\varepsilon = 1/2$:

- Pick arbitrary row *i*
- Let j = best response to i
- Find k = best response to j, play i or k with prob. 1/2

Feder, Nazerzadeh, Saberi '07: For $\varepsilon < 1/2$, we need support at least $\Omega(\log n)$

Polynomial Time Approximation Algorithms

Daskalakis, Mehta, Papadimitriou (EC '07): in **P** for $\varepsilon = 1 - 1/\varphi = (3 - \sqrt{5})/2 \approx 0.382$ (φ = golden ratio)

- Based on sampling + Linear Programming
- Need to solve polynomial number of linear programs

Bosse, Byrka, M. (WINE '07): a different LP-based method

- 1. Algorithm 1: *1-1/φ*
- 2. Algorithm 2: 0.364

Running time: need to solve one linear program

Approach

0-sum games: games of the form (R, -R)

Fact: 0-sum games can be solved in polynomial time (equivalent to linear programming)

- Start with an equilibrium of the 0-sum game (*R*-*C*, *C*-*R*)

- If incentives to deviate are "high", players take turns and adjust their strategies via best response moves

Similar idea used in [Kontogiannis, Spirakis '07] for a different notion of approximation

Algorithm 1

Parameters: α , $\delta_2 \in [0,1]$

- 1. Find an equilibrium x^* , y^* of the 0-sum game (*R C*, *C R*)
- 2. Let g_1, g_2 be the incentives to deviate for row and column player respectively. Suppose $g_1 \ge g_2$
- 3. If $g_1 \leq \alpha$, output x^* , y^*
- 4. Else: let b_1 = best response to y^* , b_2 = best response to b_1
- 5. Output:

 $x = b_1$ $y = (1 - \delta_2) y^* + \delta_2 b_2$

Theorem: Algorithm 1 with $\alpha = 1 - 1/\varphi$ and $\delta_2 = (1 - g_1) / (2 - g_1)$ achieves a $(1 - 1/\varphi)$ -approximation

Analysis of Algorithm 1

Why start with an equilibrium of (*R* - *C*, *C* - *R*)?

Intuition: If row player profits from a deviation from x^* then column player also gains at least as much

Case 1: $g_1 \le \alpha \Rightarrow \alpha$ -approximation

Case 2: $g_1 > \alpha$

Incentive to deviate:

for row player $\leq \delta_2$ for column player $\leq (1 - \delta_2)(1 - (b_1, Cy^*))$ $\leq (1 - \delta_2)(1 - g_1) = (1 - g_1) / (2 - g_1)$ $\Rightarrow \max{\alpha, (1 - \alpha)/(2 - \alpha)}$ -approximation

Analysis of Algorithm 1

Towards a better algorithm

- 1. Find an equilibrium x^* , y^* of the 0-sum game (*R C*, *C R*)
- 2. Let g_1, g_2 be the incentives to deviate for row and column player respectively. Suppose $g_1 \ge g_2$

Algorithm 2

- 1. Find an equilibrium x^* , y^* of the 0-sum game (*R C*, *C R*)
- 2. Let g_1, g_2 be the incentives to deviate for row and column player respectively. Suppose $g_1 \ge g_2$
- 3. If $g_1 \in [0, 1/3]$, output x^*, y^*
- 4. If $g_1 \in (1/3, \beta]$,
 - let $r_1 =$ best response to y^* , $x = (1 \delta_1) x^* + \delta_1 r_1$
 - let $b_2 =$ best response to x, $y = (1 \delta_2) y^* + \delta_2 b_2$
- 5. If $g_1 \in (\beta, 1]$ output:

 $x = r_1$ $y = (1 - \delta_2) y^* + \delta_2 b_2$

Analysis of Algorithm 2 (Reducing to an optimization question)

- We set δ_2 so as to equalize the incentives of the players to deviate

- Let $h = (x^*, Cb_2) - (x^*, Cy^*)$

Theorem: The approximation guarantee of Algorithm 2 is 0.364 and is given by:

 $\max_{g_1 \in [1/3, 1/2]} \min_{\delta_1 \in [0, 1]} \max_{h \in [0, g_1]} F(g_1, \delta_1, h)$

Analysis of Algorithm 2 (solution)

Optimization yields:

$$\delta_1(g_1) = (1-g_1)(\sqrt{1+\frac{1}{1-2g_1}-\frac{1}{g_1}}-1)$$

$$\delta_2(g_1, \delta_1, h) = \frac{\delta_1 - g_1 + (1 - \delta_1)h}{1 + \delta_1 - g_1}$$

Graphically:

Analysis – tight example

	0, 0	α, α	α, α
=	α, α	0, 1	1, 1/2
	α, α	1, 1/2	0, 1

(**R**, **C**)

$$\alpha \equiv 1/\sqrt{6}$$

Remarks and Open Problems

- Spirakis, Tsaknakis (WINE '07): currently best approximation of 0.339
 - yet another LP-based method
- Polynomial Time Approximation Scheme (PTAS)? Yes if:
 - rank(R) = O(1) & rank(C) = O(1) [Lipton, M. Mehta '03]
 - rank(R+C) = O(1) [Kannan, Theobald '06]
- **PPAD**-complete for $\varepsilon = 1/n$ [Chen, Deng, Teng '06]

Other Notions of Approximation

- *ɛ-well-supported equilibria:* every strategy in the support is an approximate best response
 - [Kontogiannis, Spirakis '07]: 0.658-approximation, based also on solving 0-sum games
- Strong approximation: output is geometrically close to an exact Nash equilibrium
 - [Etessami, Yannakakis '07]: mostly negative results

Thank You!