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Reductions, gaps and hardness factorsReductions, gaps and hardness factors

Main technical core is the PCP theorem.Main technical core is the PCP theorem.

Example:Example:
We can map a Boolean formula We can map a Boolean formula φφ to a graph to a graph G=(V,E)G=(V,E) such such 

that:that:
If If φφ is is satisfiablesatisfiable, , GG has a vertex cover of sizehas a vertex cover of size

If If φφ is not is not satisfiablesatisfiable, smallest , smallest v.cv.c. is of size . is of size 

Consequence:Consequence:
There is no polynomial timeThere is no polynomial time algorithm that achieves an algorithm that achieves an 

approximation guarantee of approximation guarantee of αα (unless (unless P=NP P=NP ).).
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Reductions, gaps and hardness factorsReductions, gaps and hardness factors

DefinitionsDefinitions
Let Let ΠΠ be a minimization problem. A be a minimization problem. A gapgap--introducing reductionintroducing reduction
comes with parameters comes with parameters ff and and aa. In polynomial time maps an . In polynomial time maps an 
instanceinstance φφ of  SAT to an instance of  SAT to an instance xx of of ΠΠ such that:such that:

►► If If φφ is is satisfiablesatisfiable, , 
►► If If φφ is not is not satisfiablesatisfiable, , 

Let Let ΠΠ11 be a minimization problem and be a minimization problem and ΠΠ22 be a maximization be a maximization 
problem. A problem. A gapgap--preserving reductionpreserving reduction comes with parameters comes with parameters ff11, , αα, , 
ff22 and b. In polynomial time maps an instanceand b. In polynomial time maps an instance x of x of ΠΠ11 to an to an 
instance instance yy of of ΠΠ22 such that:such that:

►►

►►
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Figuring resultsFiguring results

SAT (PCP theorem)

MAX-3SAT Set cover Clique

MAX-3SAT(5)

Vertex cover

Steiner tree



The PCP theoremThe PCP theorem

The class The class NP NP 
Suppose that there is a verifier checking incoming proofs for Suppose that there is a verifier checking incoming proofs for 

prospective strings.prospective strings.
If           then there exists a proof that makes verifier accepIf           then there exists a proof that makes verifier accept.t.
If           then no proof makes verifier accept.If           then no proof makes verifier accept.

The class The class PCP(logn,1)PCP(logn,1)
The verifier can read The verifier can read O(lognO(logn)) random bits but only random bits but only O(1)O(1) bits from bits from 

the proof. the proof. 
If           then there exists a proof that forces verifier to aIf           then there exists a proof that forces verifier to accept with ccept with 

probability probability 11..
If           then on every proof verifier accepts with probabiliIf           then on every proof verifier accepts with probability ty <1/2<1/2..
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The PCP theoremThe PCP theorem

1.1.
Proof:Proof:

Simulate the PCP verifier for each random string of lengthSimulate the PCP verifier for each random string of length O(lognO(logn).).
These are These are polynomiallypolynomially many.many.
Accept if and only if all simulations accept, otherwise reject.Accept if and only if all simulations accept, otherwise reject.

2.2.
Proof:  Proof:  

difficult (and omitted!)difficult (and omitted!)

PCP theoremPCP theorem:                                     .:                                     .

(log ,1)PCP n NPΝ

(log )NP PCP nΝ

(log ,1)NP PCP n=



Hardness of MAXHardness of MAX--3SAT3SAT

Max Max kk--function SATfunction SAT::
nn variablesvariables
mm functions of functions of kk of the of the nn variablesvariables

Find truth assignment that maximizes the number of Find truth assignment that maximizes the number of 
satisfied functionssatisfied functions

Lemma: There is a constant Lemma: There is a constant kk for which there is a gapfor which there is a gap--
introducing reduction from introducing reduction from SATSAT to to max kmax k--function SATfunction SAT
transforming transforming φφ to an instance to an instance II such thatsuch that

If If φφ is is satisfiablesatisfiable, , OPT(I)=mOPT(I)=m
If If φφ is not is not satisfiablesatisfiable, , OPT(I)<(1/2)mOPT(I)<(1/2)m..



Proof:Proof:
Let Let V  V  be a be a PCP(logn,1)PCP(logn,1) verifier for verifier for SATSAT..
For each random string For each random string rr of length of length clognclogn, V, V reads reads qq bits of the proof bits of the proof 

(a total of at most (a total of at most qnqncc bits).bits).
Introduce one variable for each of these bitsIntroduce one variable for each of these bits
For fixed For fixed φφ and and r r the verifierthe verifier’’s answer depends only on the s answer depends only on the qq bits bits 

that will read on the proof tapethat will read on the proof tape
For each For each rr (and fixed (and fixed φφ) we introduce a function ) we introduce a function ffrr which is a which is a 

function of function of qq variables (there are variables (there are nncc such functions).such functions).

If If φφ is is satisfiablesatisfiable there is a proof that makes verifier accept with there is a proof that makes verifier accept with 
probability probability 11 and thus for all the random strings and thus for all the random strings rr, , ffrr is satisfied.is satisfied.
If If φφ is not is not satisfiablesatisfiable then the acceptance probability is then the acceptance probability is <1/2<1/2 which which 
means that means that <1/2<1/2 of the random strings lead to acceptance. So of the random strings lead to acceptance. So 
<1/2<1/2 of the functions are satisfied.  of the functions are satisfied.  

Hardness of MAXHardness of MAX--3SAT3SAT



Theorem:Theorem:
There is a constant There is a constant εεMM>0 >0 for which there is a gapfor which there is a gap--introducing introducing 

reduction from reduction from SATSAT to to maxmax--3SAT 3SAT that transforms a that transforms a booleanboolean
formula formula φφ to to ψψ such that:such that:
If If φφ is is satisfiablesatisfiable, , OPT(OPT(ψψ))=m=m
If If φφ is not is not satisfiablesatisfiable, , OPT(OPT(ψψ)<(1)<(1--εεMM)m)m..

Proof:Proof:
Using previous lemma we can transform the Using previous lemma we can transform the SATSAT formula to an formula to an 

instance ofinstance of max kmax k--function SATfunction SAT..
Each Each ffrr can be written as a SAT formula can be written as a SAT formula ψψrr
ψψ is the is the conjuctionconjuction of these of these ψψrr’’ss..

If If φφ is is satisfiablesatisfiable then there is a proof that satisfies all the clauses then there is a proof that satisfies all the clauses 
of each of each ψψrr
If If φφ is not is not satisfiablesatisfiable then for every proof every then for every proof every ψψrr must have one must have one 
clause unsatisfied and so clause unsatisfied and so >(1/2)n>(1/2)ncc clauses of clauses of ψψ unsatisfied.   unsatisfied.   

Hardness of MAXHardness of MAX--3SAT3SAT



MAXMAX--3SAT with bounded occurrence3SAT with bounded occurrence
TheoremTheorem

There is a gapThere is a gap--preserving reduction from preserving reduction from MAXMAX--3SAT3SAT to to MAXMAX--3SAT(29)3SAT(29) that that 
transforms transforms φφ to to ψψ such thatsuch that
If If OPT(OPT(φφ)=m)=m, , then then OPT(OPT(ψψ)=m)=m’’
If If OPT(OPT(φφ)<(1)<(1--εεΜΜ)m)m, , then OPT(then OPT(ψψ)=(1)=(1--εεbb)m)m’’

ProofProof
For each variable For each variable xx of of φφ that occurs that occurs kk times we introduce a new set of times we introduce a new set of kk

variables variables xx11,,……,,xxkk and substitute each occurrence of and substitute each occurrence of xx with one of these with one of these 
variables.variables.

Additionally we construct a Additionally we construct a 1414--regular expander regular expander GG on on kk vertices. We add to vertices. We add to 
the formula the clauses              and               for each the formula the clauses              and               for each edge  (edge  (xxii,x,xjj) of) of G.G.

We do this for all the variables of the formula and the resultinWe do this for all the variables of the formula and the resulting formula is g formula is ψψ..
Every optimal assignment for Every optimal assignment for ψψ must assign the same value to must assign the same value to ““samesame””

variablesvariables

If If φφ is is satisfiablesatisfiable so is so is ψψ
OPT(OPT(φφ)<)<((11--εεMM)m)m implies implies >>εεMMmm clauses unsatisfied. Using the underlined clauses unsatisfied. Using the underlined 
remark remark ψψ has has >>εεMMm m clauses unsatisfied.  clauses unsatisfied.  
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Hardness of Vertex CoverHardness of Vertex Cover
TheoremTheorem

There is a gapThere is a gap--preserving reduction from preserving reduction from max 3SAT(29)max 3SAT(29) to to VC(30)VC(30) that that 
transforms a transforms a booleanboolean formula formula φφ to a graph to a graph G=(V,E)G=(V,E) such thatsuch that

►► If If OPT(OPT(φφ)=m)=m, then , then 
►► If If OPT(OPT(φφ)<(1)<(1--εεbb)m)m, then , then 

Proof Proof 
The same reduction for showing NPThe same reduction for showing NP--completenescompletenes. G has . G has 3m3m vertices.vertices.
Maximum independent set=OPT(Maximum independent set=OPT(φφ))::

►►For an optimal truth assignment pick for each satisfied clause aFor an optimal truth assignment pick for each satisfied clause a
literal that is satisfied. The corresponding vertices form an literal that is satisfied. The corresponding vertices form an 
independent setindependent set

►►For a maximum independent set For a maximum independent set II satisfy the satisfy the corespondingcoresponding
literals. The literals. The ““extensionextension”” of this assignment satisfies at least |of this assignment satisfies at least |I I | | 
clauses.  clauses.  

The complement of a max independent set is a minimum vertex coveThe complement of a max independent set is a minimum vertex coverr
If If OPT(OPT(φφ)=m)=m then then OPT(G)=2mOPT(G)=2m
If If OPT(OPT(φφ)<(1)<(1--εεbb)m)m, then, then

2( ) | |
3

OPT G V£
2( ) (1 ) | |
3uOPT G Ve> +

2( ) (2 ) (1 ) | |
2 3
b

bOPT G m Vee> + = +



Hardness of Steiner treeHardness of Steiner tree
Theorem Theorem 

There is a gapThere is a gap--preserving reduction from preserving reduction from VC(30)VC(30) to the Steiner tree to the Steiner tree 
problem that transforms an instance of problem that transforms an instance of GG of of VC(30)VC(30) to an instance to an instance 
H=(H=(R,S,costR,S,cost)) satisfying:satisfying:

ProofProof
Vertices of Vertices of HH

►►Required: Required: rree, one for each edge of, one for each edge of GG
►►Steiner: Steiner: ssuu, one for each vertex of , one for each vertex of GG

Edge costs of HEdge costs of H
►►between between SteinerSteiner vertices vertices cost=1cost=1
►►between between RequiredRequired vertices vertices cost=2cost=2
►►between between RequiredRequired vertex and vertex and ““incidentincident”” SteinerSteiner vertex vertex cost=1cost=1
►►between all other pairs between all other pairs cost=2cost=2

2 2( ) | | ( ) | | | | 1
3 3

OPT G V OPT H R S£ ή £ + -
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Proof (Proof (ctdctd.).)
►► For a vertex cover of size For a vertex cover of size cc let let SScc be the corresponding be the corresponding SteinerSteiner vertices of vertices of HH.  .  

HH has a has a steinersteiner treetree with all edges of with all edges of cost 1cost 1 since each edge is incident to one since each edge is incident to one 
vertex in vertex in GG..

ItIt’’s total cost is s total cost is |R|+|S||R|+|S|--1=|R|+c1=|R|+c--11

►► Let Let TT be a Steiner tree of cost be a Steiner tree of cost |R|+c|R|+c--11..
Let (Let (u,vu,v) be an edge of ) be an edge of cost 2cost 2 in in TT

Suppose Suppose uu is is SteinerSteiner. Remove (. Remove (u,vu,v) and add an edge from ) and add an edge from v v to a to a 
RequiredRequired vertex to connect the components. So both vertex to connect the components. So both u, v  u, v  ““becomebecome””
RequiredRequired
Let Let eeuu and and eevv be the corresponding edges in be the corresponding edges in GG. . 

G G is connected so there is a path that includes both of them. is connected so there is a path that includes both of them. 
Remove (Remove (u,vu,v) disconnecting the tree.) disconnecting the tree.
From the path there is a From the path there is a SteinerSteiner vertex that is connected to both the vertex that is connected to both the 
connected componentsconnected components

Throw in these edges .Throw in these edges .
TT is transformed to have all edges with unit cost having the samis transformed to have all edges with unit cost having the same total cost.e total cost.
Thus it has exactly Thus it has exactly cc SteinerSteiner vertices. Their corresponding vertices in vertices. Their corresponding vertices in GG form the form the 

required vertex cover of size required vertex cover of size cc

Hardness of Steiner treeHardness of Steiner tree



Hardness of CliqueHardness of Clique
LemmaLemma

There is a gap introducing reduction from SAT to Clique transforThere is a gap introducing reduction from SAT to Clique transforming ming φφ of size of size nn to a to a 
graphgraph GG of of 22qqnnbb vertices such thatvertices such that

If If φφ is is satisfiablesatisfiable, , 
If If φφ is not is not satisfiablesatisfiable,,

ProofProof
Let Let F F be a be a PCP(logn,1)PCP(logn,1) verifier forverifier for SATSAT..
For each choice ofFor each choice of rr (length (length blognblogn), and each truth assignment ), and each truth assignment ττ, to , to qq variables we get variables we get 

a vertex, say a vertex, say uurr,,ττ. (. (total of total of 22qqnnbb vertices)vertices)
We connect vertices that We connect vertices that 

►► have an have an rr so that if it so that if it ““leadsleads”” to to ττ, , then verifier accepts.then verifier accepts.
►► their their ττ may be part of the same proof.may be part of the same proof.

If If φφ is is satisfiablesatisfiable let let p(rp(r) ) be the part of the (good) proof that be the part of the (good) proof that r r ““pointspoints””. A clique of . A clique of 
size size nnbb:          :          

{{uur,p(rr,p(r))| r possible random choice}| r possible random choice}

If If φφ is not is not satisfiablesatisfiable then for every proof probability of acceptance is then for every proof probability of acceptance is <1/2<1/2. So . So 
<(1/2)n<(1/2)nbb random choices random choices ““leadlead”” to acceptance and so |to acceptance and so |largest cliquelargest clique||<(1/2)n<(1/2)nbb. . 

( If we have a clique ( If we have a clique CC then there is a proof for all then there is a proof for all ττ of the of the ““acceptingaccepting”” verticesvertices.. By By 
this proof at least |this proof at least |CC| random choices lead to acceptance. Thus probability at least | random choices lead to acceptance. Thus probability at least 
|C|/|C|/nnbb..))

( ) bOPT G n³ 1( )
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Generalizing the VerifierGeneralizing the Verifier

We want something better.We want something better.

Idea: Why donIdea: Why don’’t we run the verifier more than once to obtain better t we run the verifier more than once to obtain better 
results. We will need more random bits and read more bits!results. We will need more random bits and read more bits!

The class The class PCPc,s[r(s),q(nPCPc,s[r(s),q(n)])]
The verifier can read The verifier can read O(r(sO(r(s)))) random bits and random bits and O(q(nO(q(n)))) bits from the proof. bits from the proof. 
If             then there exists a proof, forcing verifier to acIf             then there exists a proof, forcing verifier to accept with cept with 
probability     .probability     .
If           then on every proof verifier accepts with probabiliIf           then on every proof verifier accepts with probability      .ty      .

Ok. Simulate k times the verifier:Ok. Simulate k times the verifier:
reduce soundness (the s) to <1/2reduce soundness (the s) to <1/2kk

but but O(klognO(klogn) random bits and) random bits and
O(kO(k) bits ) bits querriedquerried

c³
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NP=PCPNP=PCP1,1/n1,1/n[logn,logn][logn,logn]

Proof:Proof:
Let                           decided by verifier Let                           decided by verifier F. F. If we simulate the verifierIf we simulate the verifier

O(lognO(logn) ) times we have times we have O(lognO(logn)) bits bits querriedquerried but we will need but we will need O(logO(log22n) n) 
random bits.random bits.

Use expanders. Use expanders. 
Construct an expander with Construct an expander with nnbb vertices labeled with vertices labeled with O(blognO(blogn)  )  bitsbits..
Pick a vertex at random and take a random walk of length Pick a vertex at random and take a random walk of length O(lognO(logn).).
Simulate the verifier Simulate the verifier O(lognO(logn) ) times using as random bits the labels of the times using as random bits the labels of the 
vertices of the path.vertices of the path.
Accept Accept iffiff all simulations acceptall simulations accept

If          then all simulations will accept If          then all simulations will accept 
If          then F accepts for If          then F accepts for <n<nbb/2/2 random strings. Expanders ensure us random strings. Expanders ensure us 

that the probability that the path has only that the probability that the path has only ““acceptingaccepting”” vertices is vertices is 
<1/n<1/n. . 

(log ,1)L PCP nΞ
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(New) Hardness of Clique(New) Hardness of Clique

LemmaLemma
There is a gap introducing reduction from SAT to Clique transforThere is a gap introducing reduction from SAT to Clique transforming ming φφ of size of size nn to a to a 

graphgraph GG of of nnb+qb+q vertices such thatvertices such that

If If φφ is is satisfiablesatisfiable, , 
If If φφ is not is not satisfiablesatisfiable,,

ProofProof
Let Let F F be a be a PCPPCP1,1/n1,1/n(logn,logn)(logn,logn) verifier forverifier for SATSAT..
For each choice ofFor each choice of rr (length (length blognblogn), and each truth assignment ), and each truth assignment ττ, to , to qlognqlogn variables variables 

we get a vertex, say we get a vertex, say uurr,,ττ. (. (total of total of nnb+qb+q vertices)vertices)
We connect vertices that We connect vertices that 

►► have an r that have an r that ““leadsleads”” to to ττ that that ““leadsleads”” to acceptance.to acceptance.
►► their their ττ may be part of the same proof.may be part of the same proof.

If If φφ is is satisfiablesatisfiable let let p(rp(r) ) be the part of the proof that be the part of the proof that r r ““pointspoints””. A clique of size . A clique of size nnbb

{{uur,p(rr,p(r))| r possible random choice}| r possible random choice}

If If φφ is not is not satisfiablesatisfiable then for every proof probability of acceptance is then for every proof probability of acceptance is <1/n<1/n. So . So <n<nbb--11

random choices random choices ““leadlead”” to acceptance and so |to acceptance and so |largest cliquelargest clique||<n<nbb--11. . 

( ) bOPT G n³
1( ) bOPT G n -<



Another characterization for NPAnother characterization for NP

The The two two proverprover one roundone round modelmodel
There are two proofs (There are two proofs (proversprovers, non communicating), non communicating)
O(lognO(logn) ) random bits can be used by the verifier andrandom bits can be used by the verifier and
One position of each proof can be queriedOne position of each proof can be queried

The class The class 2P1R2P1Rc,sc,s(r(n))(r(n))

if there is a if there is a p.tp.t. verifier that reads . verifier that reads OO((r(nr(n)))) random bits random bits 
and for every input xand for every input x
►► If          , there is a pair of proofs that makes verifier to aIf          , there is a pair of proofs that makes verifier to accept ccept 

with probability with probability 
►► If          , for every pair of proofs verifier accept with If          , for every pair of proofs verifier accept with 

probability probability 

TheoremTheorem
NP=2P1RNP=2P1R1,11,1--e e ((log(nlog(n))   ))   (for some constant e>0)(for some constant e>0)
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ProofProof
We can map a We can map a booleanboolean formula formula φφ to an instanceto an instance ψψ of of Max3Sat(5)Max3Sat(5) so thatso that

►► If If φφ is is satisfiablesatisfiable, , OPT(OPT(ψψ)=m)=m
►► If If φφ is not is not satisfiablesatisfiable, , OPTOPT((ψψ)<(1)<(1--εε)m)m

The verifier:The verifier:
►► does the above reductiondoes the above reduction
►► ““getsgets””

a proof containing a truth assignment for a proof containing a truth assignment for ψψ andand
another containing in each position the truth assignments for eaanother containing in each position the truth assignments for each clause (encoded) ch clause (encoded) 

►► uses uses O(lognO(logn)) random bits to pick random bits to pick 
a clause a clause CC
a variable a variable xx of the clauseof the clause

►► asks asks 
first proof for the value of first proof for the value of xx
second proof for the values of the variables of second proof for the values of the variables of C C (including x)(including x)

►► accepts accepts iffiff CC is satisfied and the two assignments of is satisfied and the two assignments of xx agree.agree.

If If φφ is is satisfiablesatisfiable so is so is ψψ and so there is a pair of proofs forcing verifier to acceptand so there is a pair of proofs forcing verifier to accept
If If φφ is not is not satisfiablesatisfiable then suppose then suppose ττ,z,z the two proofsthe two proofs

►► at least at least εεmm clauses unsatisfiedclauses unsatisfied by assignment by assignment ττ..
►► C C is unsatisfied with probability is unsatisfied with probability >>εε (under (under ττ).).
►► if that is the case and if that is the case and z z satisfies satisfies C C then then ττ,,zz disagree at least at one assignment on the disagree at least at one assignment on the 

variables of variables of C.C.
►► V catches this with probability V catches this with probability εε/3./3.

1,12 1 (log )eNP P R n-Ν
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