Approximation algorithms

Hardness of approximation (chapter 29)

NTUA, June 2009

Reductions, gaps and hardness factors

Main technical core is the PCP theorem.
Example:
We can map a Boolean formula φ to a graph $G=(V, E)$ such that:

- If φ is satisfiable, G has a vertex cover of size $£ \frac{2}{3}|V|$
- If φ is not satisfiable, smallest v.c. is of size $>a \frac{2}{3}|V|$

Consequence:
There is no polynomial time algorithm that achieves an approximation guarantee of a (unless $P=N P$).

Reductions, gaps and hardness factors

Definitions

- Let $/ /$ be a minimization problem. A gap-introducing reduction comes with parameters f and a. In polynomial time maps an instance ϕ of SAT to an instance x of Π such that:
$>$ If φ is satisfiable, $O P T(x) £ f(x)$
$>$ If φ is not satisfiable, $O P T(x)>a(|x|) f(x)$
- Let Π_{1} be a minimization problem and Π_{2} be a maximization problem. A gap-preserving reduction comes with parameters $f_{11} a_{1}$ f_{2} and b. In polynomial time maps an instance x of Π_{1} to an instance y of Π_{2} such that:
$>\operatorname{OPT}(x) £ f_{1}(x) \dot{\eta} \operatorname{OPT}(y)^{3} f_{2}(y)$
$>O P T(x)>a(|x|) f_{1}(x) \dot{\eta} \quad O P T(y)<b(|y|) f_{2}(y)$

Figuring results

The PCP theorem

The class NP

Suppose that there is a verifier checking incoming proofs for prospective strings.
If $x \Xi L$ then there exists a proof that makes verifier accept.
If $x O L$ then no proof makes verifier accept.

The class PCP $(\log n, 1)$
The verifier can read $O(\log n)$ random bits but only $O(1)$ bits from the proof.
If $x \Xi L$ then there exists a proof that forces verifier to accept with probability 1 .
If $x \mathrm{O} L$ then on every proof verifier accepts with probability $<1 / 2$.

The PCP theorem

1. $P C P(\log n, 1) \mathrm{N} N P$

Proof:
Simulate the PCP verifier for each random string of length O(logn). These are polynomially many.
Accept if and only if all simulations accept, otherwise reject.
2. $N P$ N PCP $(\log n)$

Proof:
difficult (and omitted!)

PCP theorem: $N P=P C P(\log n, 1)$.

Hardness of MAX-3SAT

Max k-function SAT:

- n variables
- m functions of k of the n variables

Find truth assignment that maximizes the number of satisfied functions

Lemma: There is a constant k for which there is a gapintroducing reduction from SAT to max k-fiunction SAT transforming φ to an instance I such that
If φ is satisfiable, OPT(I)=m
If φ is not satisfiable, $O P T(I)<(1 / 2) m$.

Hardness of MAX-3SAT

Proof:
Let V be a PCP(logn, 1) verifier for SAT.
For each random string r of length clogn, Vreads q bits of the proof (a total of at most gnc bits).
Introduce one variable for each of these bits
For fixed φ and r the verifier's answer depends only on the q bits that will read on the proof tape
For each r (and fixed φ) we introduce a function f_{r} which is a function of q variables (there are n^{c} such functions).

- If φ is satisfiable there is a proof that makes verifier accept with probability 1 and thus for all the random strings $r_{r} f_{r}$ is satisfied.
- If φ is not satisfiable then the acceptance probability is $<1 / 2$ which means that $<1 / 2$ of the random strings lead to acceptance. So $<1 / 2$ of the functions are satisfied.

Hardness of MAX-3SAT

Theorem:
There is a constant $\varepsilon_{M}>0$ for which there is a gap-introducing reduction from SAT to max-3SAT that transforms a boolean formula φ to ψ such that:

- If φ is satisfiable, $O P T(\psi)=m$

If φ is not satisfiable, $\operatorname{OPT}(\Psi)<\left(1-\varepsilon_{M}\right) m$.
Proof:
Using previous lemma we can transform the SAT formula to an instance of max k-function SAT.
Each f_{r} can be written as a SAT formula ψ_{r} ψ is the conjuction of these ψ_{r} s.

- If φ is satisfiable then there is a proof that satisfies all the clauses of each ψ_{r}
- If φ is not satisfiable then for every proof every ψ_{r} must have one clause unsatisfied and so $>(1 / 2) n^{c}$ clauses of ψ unsatisfied.

MAX-3SAT with bounded occurrence

Theorem
There is a gap-preserving reduction from MAX-3SAT to MAX-3SAT(29) that transforms φ to ψ such that

- If $\operatorname{OPT}(\varphi)=m$, then $\operatorname{OPT}(\psi)=m^{\prime}$
- If $\operatorname{OPT}(\varphi)<\left(1-\varepsilon_{M}\right) m_{1}$ then $\operatorname{OPT}(\psi)=\left(1-\varepsilon_{b}\right) m^{\prime}$

Proof

For each variable x of Φ that occurs k times we introduce a new set of k variables $x_{i f}, \ldots, x_{k}$ and substitute each occurrence of x with one of these variables.
Additionally we construct a 14 regular expander G on k vertices. We add to the formula the clauses $\left(x_{i} \bar{I} \bar{x}_{j}\right)$ and $\left(\bar{x}_{i} \bar{I} \quad x_{j}\right)$ for each edge $\left(x_{i} x_{j}\right)$ of G.

We do this for all the variables of the formula and the resulting formula is ψ. Every optimal assianment for ψ must assign the same value to "same" variables

- If φ is satisfiable so is ψ
- OPT $(\varphi)<\left(1-\varepsilon_{M}\right) m$ implies $>\varepsilon_{M} m$ clauses unsatisfied. Using the underlined remark ψ has $>\varepsilon_{m} m$ clauses unsatisfied.

Hardness of Vertex Cover

Theorem

There is a gap-preserving reduction from max 3SAT(29) to VC(30) that transforms a boolean formula φ to a graph $G=(V, E)$ such that

- If $\operatorname{OPT}(\varphi)=m$, then $O P T(G) £ \frac{2}{3}|V|$
- If $O P T(\varphi)<\left(1-\varepsilon_{b}\right) m$, then $\operatorname{OPT}(G)>\left(1+e_{u}\right) \frac{2}{3}|V|$

Proof
The same reduction for showing NP-completenes. G has 3 m vertices. Maximum independent set=OPT(\oplus).
> For an optimal truth assignment pick for each satisfied clause a literal that is satisfied. The corresponding vertices form an independent set
$>$ For a maximum independent set I satisfy the coresponding literals. The "extension" of this assignment satisfies at least |I| clauses.
The complement of a max independent set is a minimum vertex cover

- If $\operatorname{OPT}(\varphi)=m$ then $\operatorname{OPT}(G)=2 m$

If $\operatorname{OPT}(\Phi)<\left(1-\varepsilon_{b}\right) m$, then $\operatorname{OPT}(G)>\left(2+e_{b}\right) m=\left(1+\frac{e_{b}}{2}\right) \frac{2}{3}|V|$

Hardness of Steiner tree

Theorem
There is a gap-preserving reduction from VC(30) to the Steiner tree problem that transforms an instance of G of $V C(30)$ to an instance $H=(R, S, c o s t)$ satisfying:
$\operatorname{OPT}(G) £ \frac{2}{3}|V|$ ń OPT $(H) £|R|+\frac{2}{3}|S|-1$
$\operatorname{OPT}(G)>\left(1+e_{u}\right) \frac{2}{3}|V| \dot{n} \operatorname{OPT}(H)>\left(1+e_{s}\right)\left(|R|+\frac{2}{3}|S|-1\right)$

Proof
Vertices of H
$>$ Required: $r_{E l}$ one for each edge of G
Steiner: $s_{u /}$ one for each vertex of G
Edge costs of H

- between Steiner vertices cost=1
> between Required vertices cost=2
$>$ between Required vertex and "incident" Steiner vertex cost=1
$>$ between all other pairs cost=2

$$
V C(G)=c \ddot{Y} \quad S T(H)=|R|+c-1
$$

Hardness of Steiner tree

Proof (ctd.)

For a vertex cover of size c let S_{c} be the corresponding Steiner vertices of H. Hhas a steiner tree with all edges of cost 1 since each edge is incident to one vertex in G
It's total cost is $/ R /+|S|-1=\mid R /+c-1$
Let T be a Steiner tree of cost $/ R /+c-1$.
Let (ω, v) be an edge of cost 2 in T
」 Suppose u is Steiner. Remove (u, ζ) and add an edge from v to a Required vertex to connect the components. So both u, v "become" Required

- Let e_{U} and e_{V} be the corresponding edges in G. G is connected so there is a path that includes both of them.
Remove (u, v) disconnecting the tree.
From the path there is a Steiner vertex that is connected to both the connected components
Throw in these edges .
T is transformed to have all edges with unit cost having the same total cost.
Thus it has exactly c Steiner vertices. Their corresponding vertices in G form the required vertex cover of size c

Hardness of Clique

Lemma

There is a gap introducing reduction from SAT to Clique transforming φ of size n to a graph \mathcal{G} of $2 a^{a} n^{b}$ vertices such that

- If φ is satisfiable, $O P T(G)^{3} n^{b}$

If φ is not satisfiable, OPT $(G)<\frac{1}{2} n^{b}$
Proof
Let F be a $P C P(\log n, 1)$ verifier for SAT.
For each choice of r (length blogn), and each truth assignment T, to q variables we get a vertex, say $u_{r, T}$ (total of $29 n^{b}$ vertices)
We connect vertices that
$>$ have an r so that if it "leads" to T, then verifier accepts.
$>$ their τ may be part of the same proof.
If φ is satisfiable let $p(r)$ be the part of the (good) proof that r "points". A clique of size $n^{\text {b }}$:

$$
\left.\left\{u_{r, p(r)}\right) / r \text { possible random choice }\right\}
$$

If φ is not satisfiable then for every proof probability of acceptance is $<1 / 2$. So <(1/2) n^{b} random choices "lead" to acceptance and so |/argest clique| <(1/2)n.
(If we have a clique C then there is a proof for all τ of the "accepting" vertices. By this proof at least $\mid C$ random choices lead to acceptance. Thus probability at least $\left./ C / / n^{b}.\right)$

Generalizing the Verifier

We want something better.
Idea: Why don't we run the verifier more than once to obtain better results. We will need more random bits and read more bits!

The class PCPC,s[r(s), $q(n)]$

- The verifier can read $O(r(s))$ random bits and $O(q(n))$ bits from the proof.
- If $x \Xi L$ then there exists a proof, forcing verifier to accept with probability ${ }^{3} \quad c$
- If $x \mathrm{O} L$ then on every proof verifier accepts with probability $<s$.

Ok. Simulate k times the verifier:
reduce soundness (the s) to $<1 / 2^{\mathrm{k}}$

- but $\mathrm{O}(\mathrm{k} \log \mathrm{n})$ random bits and
- $\mathrm{O}(\mathrm{k})$ bits querried

$N P=P C P_{1,1 / n}[\log n, / \log n]$

Proof:
Let $L \Xi P C P(\log n, 1)$ decided by verifier F. If we simulate the verifier $O(\log n)$ times we have $O(\log n)$ bits querried but we will need $O\left(\log ^{2} n\right)$ random bits.
Use expanders.

- Construct an expander with n^{b} vertices labeled with $O(b l o g n)$ bits.
- Pick a vertex at random and take a random walk of length O(logn).
- Simulate the verifier O(logn) times using as random bits the labels of the vertices of the path.
- Accept iff all simulations accept

If $x \Xi L$ then all simulations will accept
If $x \mathrm{O} L$ then F accepts for $<n^{b} / 2$ random strings. Expanders ensure us that the probability that the path has only "accepting" vertices is <1/n.

(New) Hardness of Clique

Lemma

There is a gap introducing reduction from SAT to Clique transforming φ of size n to a graph G of n^{b+q} vertices such that

If φ is satisfiable, $\operatorname{OPT}(G)^{3} n^{b}$
If φ is not satisfiable, $O P T(G)<n^{b-1}$
Proof
Let F be a $P C P_{1,1 / n}\left(\log \mathrm{ln}_{1} / \log n\right)$ verifier for SAT.
For each choice of r (length blogn), and each truth assignment T_{r} to qlogn variables we get a vertex, say $u_{r, 7}$ (total of n^{b+q} vertices)
We connect vertices that
> have an r that "leads" to τ that "leads" to acceptance.
$>$ their τ may be part of the same proof.
If φ is satisfiable let $p(r)$ be the part of the proof that r "points". A clique of size n^{b} $\left\{u_{r, p(r)}\right)$ r possible random choice\}

If φ is not satisfiable then for every proof probability of acceptance is $<1 / n$. So $<n^{b-1}$ random choices "lead" to acceptance and so |/argest clique| $<n^{b-1}$.

Another characterization for NP

The two prover one roundmodel

- There are two proofs (provers, non communicating)
- O(logn) random bits can be used by the verifier and
- One position of each proof can be queried

The class $2 \operatorname{PP1}_{c, s}(r(n))$
$L \Xi 2 P 1 R_{c, s}(\mathrm{r}(\mathrm{n}))$ if there is a p.t. verifier that reads $O(r(n))$ random bits and for every input x
$>$ If $x \Xi L$, there is a pair of proofs that makes verifier to accept with probability ${ }^{3} C$
$>$ If $x O L$, for every pair of proofs verifier accept with probability $<s$

Theorem

$$
\left.N P=2 P 1 R_{1,1-e}(\log (n)) \quad \text { (for some constant } e>0\right)
$$

$N P \mathrm{~N} 2 P 1 R_{1,1-e}(\log n)$

Proof
We can map a boolean formula φ to an instance ψ of Max3Sat(5) so that
$>$ If φ is satisfiable, OPT $(\psi)=m$
$>$ If φ is not satisfiable, OPT $(\psi)<(1-\varepsilon) m$
The verifier:
$>$ does the above reduction
> "gets"
a proof containing a truth assignment for ψ and
another containing in each position the truth assignments for each clause (encoded)
> uses $O(\log n)$ random bits to pick

- a clause C
a variable x of the clause
> asks
- first proof for the value of x
- second proof for the values of the variables of C (including x)
$>$ accepts iff C is satisfied and the two assignments of x agree.
If φ is satisfiable so is ψ and so there is a pair of proofs forcing verifier to accept
If φ is not satisfiable then suppose T, Z the two proof's
$>$ at least εm clauses unsatisfied by assignment τ.
$>C$ is unsatisfied with probability $>\varepsilon$ (under τ).
$>$ if that is the case and z satisfies C then T, Z disagree at least at one assignment on the variables of C.
$>$ V catches this with probability $\varepsilon / 3$.

