Approximation algorithms

Hardness of approximation (chapter 29)

NTUA, June 2009

Reductions, gaps and hardness factors

Main technical core is the PCP theorem.

Example:

We can map a Boolean formula φ to a graph G=(V,E) such that:

- If φ is satisfiable, G has a vertex cover of size $\pm \frac{2}{2}|V|$
- If φ is not satisfiable, smallest v.c. is of size $> a \frac{2}{3} |V|$

Consequence:

There is no polynomial time algorithm that achieves an approximation guarantee of a (unless P=NP).

Reductions, gaps and hardness factors

Definitions

Let Π be a minimization problem. A <u>gap-introducing reduction</u> comes with parameters *f* and *a*. In polynomial time maps an instance φ of SAT to an instance *x* of Π such that:

If φ is satisfiable, OPT(x) £ f(x)
If φ is not satisfiable, OPT(x) ≥ a(|x|)f(x)

- Let Π₁ be a minimization problem and Π₂ be a maximization problem. A <u>gap-preserving reduction</u> comes with parameters f₁, a, f₂ and b. In polynomial time maps an instance x of Π₁ to an instance y of Π₂ such that:
 - $\blacktriangleright OPT(x) \pounds f_1(x) \eta OPT(y)^3 f_2(y)$
 - ► $OPT(x) > a(|x|)f_1(x)$ ή $OPT(y) < b(|y|)f_2(y)$

Figuring results

The PCP theorem

The class NP

Suppose that there is a verifier checking incoming proofs for prospective strings.

If $x \equiv L$ then there exists a proof that makes verifier accept. If x O L then no proof makes verifier accept.

The class *PCP(logn,1)*

- The verifier can read O(logn) random bits but only O(1) bits from the proof.
- If $x \equiv L$ then there exists a proof that forces verifier to accept with probability *1*.
- If x O L then on every proof verifier accepts with probability <1/2.

The PCP theorem

1. $PCP(\log n, 1) \ge NNP$

Proof:

Simulate the PCP verifier for each random string of length *O(logn)*. These are polynomially many. Accept if and only if all simulations accept, otherwise reject.

2. NP N PCP(log n) Proof: difficult (and omitted!)

<u>PCP theorem</u>: $NP = PCP(\log n, 1)$.

Hardness of MAX-3SAT

Max *k-function SAT*:

n variables

m functions of *k* of the *n* variables
 Find truth assignment that maximizes the number of satisfied functions

Lemma: There is a constant k for which there is a gapintroducing reduction from SAT to max k-function SATtransforming φ to an instance I such that

- If φ is satisfiable, OPT(I)=m
- If φ is not satisfiable, OPT(I) < (1/2)m.

Hardness of MAX-3SAT

Proof:

Let V be a PCP(logn, 1) verifier for SAT.
For each random string r of length clogn, V reads q bits of the proof (a total of at most qn^c bits).
Introduce one variable for each of these bits
For fixed φ and r the verifier's answer depends only on the q bits that will read on the proof tape
For each r (and fixed φ) we introduce a function f, which is a function of q variables (there are n^c such functions).

- If φ is satisfiable there is a proof that makes verifier accept with probability 1 and thus for all the random strings r, f_r is satisfied.
- If φ is not satisfiable then the acceptance probability is <1/2 which means that <1/2 of the random strings lead to acceptance. So <1/2 of the functions are satisfied.

Hardness of MAX-3SAT

Theorem:

There is a constant $\varepsilon_M > 0$ for which there is a gap-introducing reduction from *SAT* to *max-3SAT* that transforms a boolean formula φ to ψ such that:

- If φ is satisfiable, $OPT(\psi)=m$
- If φ is not satisfiable, $OPT(\psi) < (1-\varepsilon_M)m$.

Proof:

Using previous lemma we can transform the *SAT* formula to an instance of *max k-function SAT*. Each f_r can be written as a SAT formula ψ_r ψ is the conjuction of these ψ_r 's.

- If φ is satisfiable then there is a proof that satisfies all the clauses of each ψ_r
- If φ is not satisfiable then for every proof every ψ_r must have one clause unsatisfied and so $>(1/2)n^c$ clauses of ψ unsatisfied.

MAX-3SAT with bounded occurrence

Theorem

There is a gap-preserving reduction from *MAX-3SAT* to *MAX-3SAT(29)* that transforms φ to ψ such that

- If $OPT(\varphi)=m$, then $OPT(\psi)=m'$
- If $OPT(\varphi) < (1-\varepsilon_{M})m$, then $OPT(\psi) = (1-\varepsilon_{b})m'$

Proof

For each variable \underline{x} of $\underline{\varphi}$ that occurs \underline{k} times we introduce a new set of k variables $x_1, ..., x_k$ and substitute each occurrence of x with one of these variables.

Additionally we construct a 14-regular expander G on k vertices. We add to the formula the clauses $(x_i \ \ \overline{x}_i)$ and $(\overline{x_i} \ \ x_i)$ for each edge $(x_i x_j)$ of G.

We do this for all the variables of the formula and the resulting formula is ψ . <u>Every optimal assignment for ψ must assign the same value to "same"</u> <u>variables</u>

• If φ is satisfiable so is ψ

• $OPT(\varphi) < (1 - \varepsilon_M)m$ implies $> \varepsilon_M m$ clauses unsatisfied. Using the underlined remark ψ has $> \varepsilon_M m$ clauses unsatisfied.

Hardness of Vertex Cover

Theorem

There is a gap-preserving reduction from max 3SAT(29) to VC(30) that transforms a boolean formula φ to a graph G=(V,E) such that

► If $OPT(\varphi) = m$, then $OPT(G) \pm \frac{2}{3}|V|$ ► If $OPT(\varphi) < (1-\varepsilon_b)m$, then $OPT(G) > (1+e_u)\frac{2}{3}|V|$

Proof

The same reduction for showing NP-completenes. G has 3m vertices. <u>Maximum independent set=OPT(φ):</u>

- For an optimal truth assignment pick for each satisfied clause a literal that is satisfied. The corresponding vertices form an independent set
- For a maximum independent set I satisfy the coresponding literals. The "extension" of this assignment satisfies at least |I| clauses.

The complement of a max independent set is a minimum vertex cover

- If $OPT(\varphi)=m$ then OPT(G)=2m
- If $OPT(\varphi) < (1-\varepsilon_b)m$, then $OPT(G) > (2+e_b)m = (1+\frac{e_b}{2})\frac{2}{3}|V|$

Hardness of Steiner tree

Theorem

There is a gap-preserving reduction from *VC(30)* to the Steiner tree problem that transforms an instance of *G* of *VC(30)* to an instance H=(R,S,cost) satisfying: $OPT(G) \pm \frac{2}{3}|V| \notin OPT(H) \pm |R| + \frac{2}{3}|S| - 1$ $OPT(G) > (1 + e_u) \frac{2}{3}|V| \# OPT(H) > (1 + e_s)(|R| + \frac{2}{3}|S| - 1)$

Proof

Vertices of H

Required: r_{er} one for each edge of G

Steiner: s_u , one for each vertex of G

Edge costs of H

between Steiner vertices cost=1

- between Required vertices cost=2
- between Required vertex and "incident" Steiner vertex cost=1

between all other pairs cost=2

 $VC(G) = c \ddot{Y} ST(H) = |R| + c - 1$

Hardness of Steiner tree

Proof (ctd.)

For a vertex cover of size c let S_c be the corresponding *Steiner* vertices of H. H has a *steiner tree* with all edges of *cost 1* since each edge is incident to one vertex in G.

It's total cost is /R/+/S/-1=/R/+c-1

Let T be a Steiner tree of cost /R/+c-1. Let (u, v) be an edge of cost 2 in T

Suppose u is Steiner. Remove (u, v) and add an edge from v to a Required vertex to connect the components. So both u, v "become" Required

Let e_u and e_v be the corresponding edges in G.
 G is connected so there is a path that includes both of them.

Remove (u, v) disconnecting the tree.

From the path there is a *Steiner* vertex that is connected to both the connected components

Throw in these edges .

 \mathcal{T} is transformed to have all edges with unit cost having the same total cost. Thus it has exactly *c Steiner* vertices. Their corresponding vertices in *G* form the required vertex cover of size *c*

Hardness of Clique

Lemma

There is a gap introducing reduction from SAT to Clique transforming φ of size n to a graph G of 2ªn^b vertices such that

- If φ is satisfiable, $OPT(G)^3$ n^b If φ is not satisfiable, $OPT(G) \le \frac{1}{2}n^b$

Proof

Let *F* be a *PCP(logn,1*) verifier for *SAT*.

For each choice of *r* (length *blogn*), and each truth assignment τ , to *q* variables we get a vertex, say $u_{r,\tau}$ (total of $2^q n^b$ vertices)

We connect vertices that

- \triangleright have an r so that if it "leads" to τ , then verifier accepts.
- \triangleright their τ may be part of the same proof.

If ϕ is satisfiable let p(r) be the part of the (good) proof that r "points". A clique of size *n^b*:

{*u_{r,p(r)}*/ *r* possible random choice}

If φ is not satisfiable then for every proof probability of acceptance is <1/2. So $<(1/2)n^{b}$ random choices "lead" to acceptance and so $|argest clique| <(1/2)n^{b}$.

(If we have a clique *C* then there is a proof for all τ of the "accepting" vertices. By this proof at least |C| random choices lead to acceptance. Thus probability at least $|C|/n^{b}$.)

Generalizing the Verifier

We want something better.

Idea: Why don't we run the verifier more than once to obtain better results. We will need more random bits and read more bits!

The class *PCPc,s[r(s),q(n)]*

- The verifier can read O(r(s)) random bits and O(q(n)) bits from the proof.
- If $x \equiv L$ then there exists a proof, forcing verifier to accept with probability ³ *c*
- If x O L then on every proof verifier accepts with probability $\leq s$.

Ok. Simulate k times the verifier:

- reduce soundness (the s) to $<1/2^{k}$
- but O(klogn) random bits and
- O(k) bits querried

NP=PCP_{1,1/n}[logn,logn]

Proof:

Let $L \equiv PCP(\log n, 1)$ decided by verifier *F*. If we simulate the verifier *O(logn)* times we have *O(logn)* bits querried but we will need *O(log²n)* random bits.

Use expanders.

- Construct an expander with n^b vertices labeled with O(blogn) bits.
- Pick a vertex at random and take a random walk of length O(logn).
- Simulate the verifier O(logn) times using as random bits the labels of the vertices of the path.
- Accept iff all simulations accept

If $x \equiv L$ then all simulations will accept

If x O L then F accepts for $\langle n^b/2 \rangle$ random strings. Expanders ensure us that the probability that the path has only "accepting" vertices is $\langle 1/n \rangle$.

(New) Hardness of Clique

Lemma

There is a gap introducing reduction from SAT to Clique transforming φ of size *n* to a graph *G* of n^{b+q} vertices such that

- If φ is satisfiable, $OPT(G)^3$ n^b
- If φ is not satisfiable, $OPT(G) \le n^{b-1}$

Proof

Let *F* be a $PCP_{1,1/n}(logn,logn)$ verifier for *SAT*. For each choice of *r* (length *blogn*), and each truth assignment τ , to *qlogn* variables we get a vertex, say $u_{r,\tau}$ (total of n^{b+q} vertices) We connect vertices that

- have an r that "leads" to r that "leads" to acceptance.
- > their τ may be part of the same proof.

If φ is satisfiable let p(r) be the part of the proof that r "points". A clique of size n^b $\{u_{r,p(r)} | r \text{ possible random choice}\}$

If φ is not satisfiable then for every proof probability of acceptance is <1/n. So $<n^{b-1}$ random choices "lead" to acceptance and so $|argest clique| < n^{b-1}$.

Another characterization for NP

The two prover one round model

- There are two proofs (provers, non communicating)
- O(logn) random bits can be used by the verifier and
- One position of each proof can be queried

The class 2P1R_{c,s}(r(n))

 $L \equiv 2P1R_{c,s}(r(n))$ if there is a p.t. verifier that reads O(r(n)) random bits and for every input x

- ▶ If $x \equiv L$, there is a pair of proofs that makes verifier to accept with probability ³ c
- ▶ If x O L, for every pair of proofs verifier accept with probability < s

Theorem $NP=2P1R_{1,1-e}(log(n))$ (for some constant e>0)

$NP \ge 2P R_{1,1-e}(\log n)$

Proof

We can map a boolean formula φ to an instance ψ of *Max3Sat(5)* so that

- ▶ If φ is satisfiable, $OPT(\psi)=m$
- ▶ If φ is not satisfiable, $OPT(\psi) < (1-\varepsilon)m$

The verifier:

- does the above reduction
- "gets"
 - a proof containing a truth assignment for ψ and
 - another containing in each position the truth assignments for each clause (encoded)
- uses O(logn) random bits to pick
 - a clause *C*
 - a variable x of the clause
- asks
 - first proof for the value of x
 - second proof for the values of the variables of C (including x)
- > accepts iff C is satisfied and the two assignments of x agree.
- If φ is satisfiable so is ψ and so there is a pair of proofs forcing verifier to accept
 If φ is not satisfiable then suppose τ, z the two proofs
 - > at least εm clauses unsatisfied by assignment τ .
 - > C is unsatisfied with probability $>\varepsilon$ (under τ).
 - ▶ if that is the case and *z* satisfies *C* then *τ*,*z* disagree at least at one assignment on the variables of *C*.
 - > V catches this with probability $\varepsilon/3$.