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Reductions, gaps and hardness factors

Main technical core is the PCP theorem.

Example:

We can map a Boolean formula @'te a graph G=(V,£) such

that: ;
If @is satisfiable, G has a vertex cover ofi size £ 4 V|

2
If @ is not satisfiable, smallest v.c. is of size > ag 1V |

Conseguence:

There is no polynomial time algorithm that achieves an
approximation guarantee of a (unless P=NP.).



Reductions, gaps and hardness factors

Definitions

et /7 be a minimization problem. A gap-introducing reduction
comes with parameters / and a. In polynomial time maps an
instance @ of SAT to an instance xof // such that:

» If @is satisfiable, OPT (x) £ f(X)
» If @is not satisfiable, OPT (x)> a(| x|) f (x)

Let /7, be a minimization problem and /7, be a maximization
problem. A gap-preservingl reduction comes with parameters 7, g,
/> and b. In polynomiall time maps an instance x of [l; to an
instance yof /7, such that:

> OPT()£ f,(x)n OPT(y)* f,(y)
> OPT(x)> a(|x[)1,()M OPT(y)< b(|y[T,(y)
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The PCP theorem

The class NP

Suppose that there is a verifier checking incoming proofs for
prospective strings.

If XE L then there exists a proof that makes verifier accept.
If X O L then no proof makes verifier accept.

The class PCP(logn, 1)

The verifier can read O(/ogr)random bits but only O(1) bits from
the proof.

If XE L then there exists a proof that forces verifier to accept with
probability 7.

If XO L then on every proof verifier accepts with probability <1/2.



The PCP theorem

1. PCP(ogn,1) N NP
Proof:
Simulate the PCP: verifier for each randomi string of length O(/ogr.):

These are polynomially many.
Accept if and only if all simulations accept, otherwise reject.

2. NP N PCP(logn)

Proof:
difficult (and omitted!)

PCP theorem: NP = PCP(logn,1).




Hardness of MAX-3SAT

Max K-function SAT-
/' vVariables
/m functions of kK ofi the /2 variables

Find truth assignment that maximizes the number of
satisfied functions

Lemma: There is a constant x for which there is a gap-
iIntroducing reduction from SA7T to max Kk-runction SAT
transforming ¢@to an instance /such that

It @ is satisfiable, OPT(l)=m
It @'is not satisfiable, OPT(1)<(1/2)m.



Hardness of MAX-3SAT

Proof:
Let I/ be a PCP(logn, 1) verifier for SAT.

For each random string| r of length: c/logn, V/reads g bits of the proofi
(a total of at most grr bits).

Introduce one variable for each of these bits

For fixed 10and - the verifier’s answer depends only oni the g bits
that will read on the proof tape

For each r (andifixed @) we introduce a function /- which is a
function oft g variables (there are ¢ such functions).

If @ is satisfiable there is a proofi that makes verifier accept with
probability 7 and thus for all the random strings 7, /- Is satisfied.

If @ is not satisfiable then the acceptance probability is <1/2which
means that <1/2 of the random strings lead to acceptance. So
<1/2 of the functions are satisfied.



Hardness of MAX-3SAT

Theorem:

There is a constant &,,>0 for which there is a gap-introducing
reduction from SA %to max-3SA7T that transforms a boolean
formula @ to wsuch that:

If @ is satisfiable, OPT(w)=m
I @ is not satisfiable, OPI(w)<(1-&,)m.

Proof:

Using previous lemma we can transform, the SA7 formula to an
iInstance off max k-rfunction SAT.

Each /- can be written as a SAT formula ¢,
w'is the conjuction of these . 5.

If @ is satisfiable then there is a proofi that satisfies all the clauses
of each y,

If @iis not satisfiable then for every proofi every . must have one
clause unsatisfied and so >(1/2)n¢ clauses of w unsatisfied.



MAX-3SAT with bounded occurrence

Theorem

There is a gap-preserving reduction from MAX-5SAT to MAX-3SAT(29)that
transforms @ to w such that

If OPT(®)=m, then OPT(w)=m"
It OPT(®)<(1-&,,)m, then OPT(W)=(1-E,)m"

Proof

[For each variable x off @ that occurs & times we introduce a new. set off &
varialgles X,---,X;, and substitute each occurrence of x with one of these
variables.

Additionally’ we construct a 74-regular expander G on k vertices. We add| to
the formula the clauses (x, I X;) and (x I x;) for each edge (x,x) of G.

We do this for all the variables of the formula and the resulting formula is .

Every optimal assignment for ¢ must assign the same value to “same”
variables

If @ is satisfiable so is

OPT(®)<(1-g,)mimplies >g,m clauses unsatisfied. Using the underlined
remark @has >&,/m clauses unsatisfied.



Hardness of Vertex Cover

Theorem

There is a gap-preservin? reduction firom max 3SAT(29)to VC(30) that
transforms a boolean formula @'to a graph G=(V,£)'such that

» If OPT{)=m, then OPT(G)% §|V| .
> If OPT(@)<(1-€,)m, then OPT (G)> (1+ &)1V

Proof
The same reduction for showing NP-completenes. G has 5/ vertices.
Maximum independent set=0PT{(®):

» For an optimal truth assignment pick for each satisfied clause a
literal that is satisfied. The corresponding vertices form an
independent set

» For a maximum independent set 7 satisfy the coresponding
Iilterals. The “extension” of this assignment satisfies at least |/ |
clauses.

The complement of a max independent set is a minimum vertex cover
It OPT(®p)=m then OPI(G)=2m \
If OPT(p)<(1-£,)m, then OPT(G)> (2+ ¢, )m= (1+ Eb)§|v |




Hardness of Steiner tree

Theorem

There is a gap-preserving reduction from VC(50)to the Steiner tree
problem that transforms ani instance off G off VC(50)'to an| instance
H=(R, S, coszz satisfying: )

OPT(G)¢ S|V fi OPT(H)£|R|+ZIS|- 1
OPT(G)>(1+e )2|V|n OPT(H)>(1+e)(|R|+—|S|- 1)

Proof:

Vertices of H
» Required: 7, one for each edge off G
» Steiner: s, one for each vertex of G

Edge costs of H
» between Ste/ner vertices cost=1
» between Reguired vertices cost=2
» between Reguired vertex and “incident” Ste/ner vertex cost=1
» between, all other pairs cost=2

VC(G)=cY ST(H)=|R|+c- 1



Hardness of Steiner tree

Proof (ctd.)
= FFor a vertex cover of size clet S, be the corresponding Ste/ner vertices of /.

fhas a steiner treewith all edges of cost 1 since each edge is incident to one

vertex in G.
It's total cost is /[R/+/S/-1=/R/+c-1

= Let 7 be a Steiner tree of cost /R/+c-1.

Let (4, v) be an edge of cost 2 in T

Suppose v is Steiner. Remove (u,v) and add an edge from v to a
Reguired vertex to connect the components. So beth ¢, v “become”

Reqguired

Let ,and e, be the corresponding edges in G.
G is connected so there is a path that includes both of them.
Remove (u, V) disconnecting the tree.
From the path there is a Ste/ner vertex that is connected to both the
connected components

Throw in these edges .
/" is transformed to have all edges with unit cost having the same total cost.

Thus it has exactly ¢ Steiner vertices. Their corresponding vertices in G form the
required vertex cover of size ¢



Hardness of Cligue

Lemma

There is a gap introducing reduction from SAT to Clique transforming ¢ of size 7.to a
graph G ofi 29i2? vertices such that

If @ is satisfiable, OPT(G)?* n° 1
If @ is not satisfiable, OPT (G) < 5nb

Proof
Let £ be a PCP(logn, 1) verifier for SAT.

For each choice of 7 (length b/ogn), and each truth assignment 7, to g variables we get
a vertex, say v, . (total of 2797 vertices)

We connect vertices that
» have an rso that if it “leads™ to 7, then verifier accepts.
» their 7 may be part of the same proof.

Iff @is sglt)isfiable let p(r) be the part of the (good) proof that r “points”. A cligue of
Size 1

{U, o)l 1" POSSIDIE random choice}

If @ is not satisfiable then for every proof probability of acceptance is <1/2. So
<(1/2)’ random choices “lead” to acceptance and so |/argest digue| <(1/2)r".

( If we have a cligue Cthen there is a proof for all 7 of the “accepting” vertices. By
t/tz[wc;of at least | C] random choices lead to acceptance. Thus probability at least



Generalizing the Verifier

We want something| better.

Idea: Why don't we run the verifier more than once to obtain better
results. We will need more random bits and read more bits!

The class PCPc s[r(s),g(rn)/
The verifier can read O(r(s))random bits and' O(qg(n)) bits from the proof.

If XE L then there exists a proof, forcing verifier to accept with
probability® €

If XO L then on every proof verifier accepts with probability< S.

Ok. Simulate k times the verifier:
reduce soundness (the s) to <1/2k
but O(klogn) random bits and
O(k) bits querried



NP=PCP, ,,.[10gn,/ogn]

Proof:

Let L= PCP(logn,l) decided by verifier £ Iff we simulate the verifier
O(logn) times we have O(logrn) bits guerried but we will need O(log’n)
random bits.

Use expanders.

Construct an expander withi 72 vertices labeled with O(b/ogn) bits.
Pick a vertex at random and take a random walk of length O(/ogr).

Simulate the verifier O(/ogn) times using as random bits the labels of the
vertices of the path.

Accept Iff all simulations accept

If XE L then all simulations will accept

If x O L then F accepts for <n?/2 random strings. Expanders ensure us
that the probability that the path has only “accepting” vertices is
<1/n.



(New) Hardness of Cligue

Lemma

There is a gap introducing reduction from SAT to Clique transforming @ of size nto a
graph G of 7?79 vertices such that

If @is satisfiable, OPT(G)? n°
It @ is not satisfiable, OPT(G)< n”'

Proof
Let £ be a PCP; ; ,(1ogn,jogn) Vverifier for SAT.

For each choice of 7 (length H/ogn), and each truth assignment 7, to glogn variables
we get a vertex, say v, .. (total of /77*9 vertices)

We connect vertices that
» have an r that “leads” to 7that “leads” to acceptance.
» their 7 may be part off the same proof.

If @is satisfiable let p(r) be the part of the proof that  “points”. A clique of size 7”
(U, o)l I POSSIDIE Fandom. cholce)

If @is not satisfiable then for every proof probability of acceptance is <i/n. So <
random choices “lead” to acceptance and so |/argest cligue| <.



Another characterization for NP

The two prover onée rournd model
There are two proofs (provers, non communicating)
O(logn) random bits can be used by the verifier and
One position of eachi proof can be queried

The class 2PIR_(r{(11))

LE2PIR; (r(n)) if there is a p.t. verifier that reads O(r(77)) random bits
and for every input x

» If XEL there is a pair of proofs that makes verifier to accept
with' probability ® ¢

» If XOL , for every pair of proofs verifier accept with
probability < S

Theorem
NP=2PIR; ;.. (log(n)) (for some constant e>0)



NP N 2PIR, , . (logn)

Proof
We can map a boolean formula @ to an instance w of Max35at(5) so that
» If @ is satisfiable, OPT(w)=m
» If @is not satisfiable, OPT(w)<(1-€)m

The verifier:
» does the above reduction
» “gets”
a proof containing a truth assignment for ¢ and
another containing in each position the truth assignments for each clause (encoded)
» uses O(logrn) random bits to pick
a clause C
a variable x of the clause
» asks
first proof for the value of x
second proof for the values of the variables of C (including x)
» accepts iff Cis satisfied and the two assignments of x agree.

If @ is satisfiable so is ¢ and so there is a pair of proofs forcing verifier to accept
If @ is not satisfiable then suppose 7,z the two proofs

» at least &m clauses unsatisfied by assignment 7.

» Cis unsatisfied with probability >& (under 7).

» if that is the case and zsatisfies Cthen 7,z disagree at least at one assignment on the
variables of C

» V catches this with probability &/5.
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