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Given an undirected graph G = (V, E), an edge cost function c : E , and a 
collection of disjoint subsets of V,                      , find a minimum cost subgraph in 
which each pair of vertices belonging to the same set       is connected

Q+→

1 2, ,..., kS S S
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The problem

Alternatively we can define a connectivity requirement function r that maps 
unordered pairs of vertices to {0,1} as follows: 

The problem now is to find a minimum cost subgraph that contains a u-v path 
for each pair (u,v) with r(u,v)=1

1 if   and   belong to the same set 
( , )

0                                           otherwise
iu v S

r u v  
=  
 



Minimum Steiner tree is a special case in which k = 1 and      is an arbitrary subset of V.

Since Steiner Tree is NP-hard, Steiner forest is also NP-Hard.

There is a very simple 2-approximation algorithm for Steiner Tree.

G. Robins, A. Zelikovsky (2005): The best known approximation factor is:
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Relationship to Steiner Tree
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Why can’t we use a simple
algorithm for Steiner Tree
problem to solve the Steiner
Forest problem? We would just
have to merge the Steiner trees
for every set …

iS

This example shows that the 
above technique could lead us 
to a k-approximation algorithm 



LP
• Function                            specifies the minimum number of edges that must 
cross each cut in any feasible solution:

• δ(S) denotes the set of edges crossing the cut  

• will be set to 1 iff e is picked, else will be set to 0

Then the problem is:

: 2 {0,1}Vf →

    1                if   u S    and    v   such that  r(u,v) = 1( )
    0                                                                      otherwise 
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LP relaxation
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Integrality gap

Consider a cycle on n vertices and with each edge of cost 1. We require all 
the vertices to be connected to each other. The minimum
Steiner forest has cost n-1 as we choose n-1 edges arbitrarily. However, the 
LP can be solved by setting                    for all e (it satisfies the 

constraints of the LP) ,  giving a value of 

This leads to the result that the integrality gap is greater than 
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Dual Program



•(Initialization)              ;  for each

•(Edge augmentation ) while there exists an unsatisfied set do:
simultaneously raise           for each active set   S , until some edge e goes 
tight;

•(Pruning) return                                           is primal infeasible}

}{     eF F← ∪

F ←∅ ,    0sS V y⊆ ←

  sy

' { |  { }F e F F e= ∈ −

Algorithm (Steiner Forest)



Is the pruning step is necessary?
YES!

Definitions

•Edge e feels dual if                                    

•Edge e is tight if the total amount of dual it feels equal its cost

•Set S is unsatisfied if                  but there is no picked edge crossing the 
cut  

•Set S is active if it is a minimal unsatisfied set in the current iteration

( ) 1f S =
( , )S S

sy 0 and ( )sy e Sδ> ∈
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A given graph

In this graph the connectivity requirements are r(u,v)=1 and r(s,t)=1
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The optimal solution to the above graph of cost 45
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The algorithm: First iteration

Active sets
• {u}
• {v}
• {s}
• {t}
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The algorithm: Second iteration

Active sets
• {u, a}
• {v}
• {s}
• {t}
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The algorithm: Third iteration

Active sets
• {u, a}
• {v, b}
• {s}
• {t}
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The algorithm: Fourth iteration

Active sets
• {u, a, s}
• {v, b}
• {t}



20

1916

1212

9

66

ba

u v

s t8

6 6

9

2
3

12

The algorithm: Fifth iteration

Active sets
• {u, a, s}
• {v, b, t}
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The algorithm: Pruning step

Finally  we get a solution of cost 54 while the cost of the optional 
solution was 45  

Active sets
There aren’t any



Analysis(1)

Lemmata

(i) At the end of the algorithm, F’ and y are primal and dual feasible solutions, 
respectively

(ii)

Those two lemmata give us the proof, that the algorithm we described, achieves 
an approximation guarantee of factor 2 for the Steiner Forest problem
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≤∑ ∑



Analysis(2)

Proof

(i) By design, F is acyclic because no edge running within the same 
component, can go tight. Moreover,  at the end of the algorithm if 
r(u,v)=1, there is a unique u-v path in F. Thus, each edge on this path 
is not redundant and it is not deleted on the pruning step. Hence F’ is 
primal feasible

When an edge becomes tight, the active sets are redifined. As a result, 
the edge that had just been tight, is a part of the connected 
component and it can’t be overtightened. Hence, y is dual feasible



Analysis(3)

Proof

(ii) Notation:                   denotes the number of edges of F’ crossing the 
cut             

Since every picked edge is tight:

Changing the order of summation we get:
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Analysis(4)

Thus, we need to show that

Let Δ be the extent to which active sets were raised in the last 
iteration. Then we need to show:

'deg ( ) 2F S S
S V S V

S y y
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Analysis(5)

So we need to show that in this iteration , the average degree of active 
sets is at most 2

Imagine F (the final forest) with each current connected component 
collapsed into a single node. In this revised F, none of the inactive 
connected components will be leaves, because we would have 
removed edges connecting these components to the rest of the forest 
during the pruning step.

Therefore, the average degree of all active connected components is 
the average degree of a subset of the nodes in a tree, including all of 
the leaves. So the average degree is at most 2.



Tight example
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