Approximation Algorithms

Multiway Cut and k-Cut

Kaouri Georgia

Definitions

- A cut on an undirected, connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with weights to edges w : $E \rightarrow R^{+}$, is defined by a partition of E into two sets, V^{\prime} and $\mathrm{E}-\mathrm{V}^{\prime}$, and consists of all the edges that have one endpoint in each partition.
- Given terminals s,t in G, the cut defined by a partition that separates s from t is called an s-t cut.
- Multiway cut: Given a set of terminals $S=\left\{s_{1}, S_{2}, \ldots, s_{k}\right\}$, a multiway cut is a set of edges whose removal separates all terminals from each other.
- k-cut: A set of edges whose removal leaves k connected components is a k -cut.
- We are interested in the minimum weight version of these problems.

2-2/k approximation algorithm for minimum weight Multiway cut

- Algorithm:
- For each $i=1,2, \ldots, k$, compute a minimum weight isolating cut for s_{i}, say C_{i}.
- Output the union of these cuts, discarding the heaviest.
- The above algorithm is $2-2 / k$ approximative.
- Let A be an optimal multiway cut in G. A is composed by k subsets, say $A_{1}, A_{2}, \ldots, A_{k}$, where A_{i} is the cut that separates the component containing s_{i} from the rest of the graph.
- Each edge of A has its two endpoints in two $A_{i} s$. Therefore $\sum_{i=1}{ }^{k} w\left(A_{i}\right)=2 w(A)$.
- A_{i} is an isolating cut for s_{i}, but C_{i} is the minimum, so $w\left(C_{i}\right) \leq w\left(A_{i}\right)$
- We discard the heaviest of the cuts C_{i}, therefore $w(C) \leq(1-1 / k) \sum_{i=1}{ }^{k} w\left(C_{i}\right)$. Hence:

$$
w(C) \leq(1-1 / k) \sum_{i=1}^{k} w\left(C_{i}\right) \leq(1-1 / k) \sum_{i=1}^{k} w\left(A_{i}\right)=2(1-1 / k) w(A)
$$

Tight example

- Consider a graph with $2 k$ vertices, k of which form a k-cycle with edge weight equal to 1 and k terminals, each one connected to one of the vertices of the cycle with edges of weight $2-\varepsilon$ for a small $\varepsilon>0$.
- The algorithm computes a solution of weight $(k-1)(2-\varepsilon)$, while the optimal multiway cut has weight k.

Construction of a Gomory-Hu tree

- Consider a tree T with one node, the set $\mathrm{S}_{0}=\mathrm{V}$
- Select a set $\mathrm{S}_{\mathrm{i}}, \mid \mathrm{S}_{\mathrm{i}} \geq 2$ and select 2 vertices u, v of S_{i}.
- Compute a minimum u-v cut in G^{\prime}, where G^{\prime} is the graph obtained by G and collapsing each subtree of S_{i} into a single supernode. We compute the minimum cut between u and v in the new graph and obtain a partition $V n$ containing u and V_{2} containing v .
- Graph T is modified by breaking S_{i} into two sets $\mathrm{S}_{\mathrm{i} 1}=\mathrm{S}_{\mathrm{i}} \cap \mathrm{V}_{1}$ and $\mathrm{S}_{\mathrm{i} 2}=\mathrm{S}_{\mathrm{i}} \cap \mathrm{V}_{2}$. We add an edge between them with cost the cost just calculated.
- We connect a subtree of T to $S_{i 1}$ if its supernode was in the same partition as u in the minimum cut, otherwise we connect it to $\mathrm{S}_{\mathrm{i} 2}$.

Properties of a Gomory-Hu tree

- For each pair of vertices u, v in V, the weight of a minimum $u-v$ cut in G is the same as that in T
- For each edge e in T, w'(e) is the weight of the cut associated with e in G .
- Lemma: Let S be the union of cuts in G associated with I edges of T. Then, the removal of S from G leaves the graph with at least I+1 components.
- Let $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{1+1}$ be the connected components which are left in T after removing I edges. For any u in V_{i} and v in V_{j}, we must have removed some edge in T that disconnects u and v. A cut is associated with this edge in G, which must disconnect u and v in G as well. Thus removing I edges in T , results in at least $\mathrm{I}+1$ connected components in G.

(2-2/k) approximation algorithm

- Compute a Gomory-Hu tree T in G
- Output the union C of the $\mathrm{k}-1$ lightest cuts of the $\mathrm{n}-1$ cuts associated with edges of T in G
- If more than k components are created, throw back some edges until there are k components.
- Let A be an optimal k-cut in G. As before, let the cuts $V_{1}, V_{2}, \ldots, V_{k+1}$ be the k components formed by removing A from G and A_{i} the cut separating V_{i} from the rest of the graph and $\Sigma_{i=1}{ }^{k} w\left(A_{i}\right)=2 w(A)$.
- Assume A_{k} is the heaviest cut.
- Modify T by shrinking vertices corresponding to each V_{i} into a supernode and remove edges until the graph becomes a tree T^{\prime}.
- Root T^{\prime} at the supernode of V_{k}. Consider the edge (u_{i}, v_{i}) connecting a supernode V_{i} with its parent. These edges belonged in T , therefore $w^{\prime}\left(u_{i}, v_{i}\right) \leq w\left(A_{i}\right)$. Thus

$$
\sum_{i=1}{ }^{k-1} w^{\prime}\left(u_{i}, v_{i}\right) \leq \sum_{i=1}{ }^{k-1} w\left(A_{i}\right) \leq 2(1-1 / k) w(A)
$$

Tight Example

- Similar as in multiway cut.
- $2 k$ vertices k of which form a cycle with edge costs equal to 1 and k distant nodes (they are no longer called terminals) connected with one node of the cycle with an edge with cost $2-\varepsilon$.
- Using the Gomory-Hu algorithm a solution with cost $(k-1)(2-\varepsilon)$, whereas the optimal algorithm picks all edges with cost 1 , i.e. te cost is k.

Thank you!

