Approximation Algorithms

Multiway Cut and k-Cut

Kaouri Georgia

NTUA, Spring Semester 2009

Definitions

- A cut on an undirected, connected graph G=(V,E) with weights to edges w: E→R⁺, is defined by a partition of E into two sets, V' and E-V', and consists of all the edges that have one endpoint in each partition.
- Given terminals s,t in G, the cut defined by a partition that separates s from t is called an s-t cut.
- Multiway cut: Given a set of terminals S={s₁,s₂,...,s_k}, a multiway cut is a set of edges whose removal separates all terminals from each other.
- k-cut: A set of edges whose removal leaves k connected components is a k-cut.
- We are interested in the minimum weight version of these problems.

2-2/k approximation algorithm for minimum weight Multiway cut

Algorithm:

- For each i=1,2,...,k, compute a minimum weight isolating cut for s_i, say C_i.
- Output the union of these cuts, discarding the heaviest.
- The above algorithm is 2-2/k approximative.
- Let A be an optimal multiway cut in G. A is composed by k subsets, say A₁, A₂,...,A_k, where A_i is the cut that separates the component containing s_i from the rest of the graph.
- Each edge of A has its two endpoints in two A_is. Therefore Σ_{i=1}^kw(A_i)=2w(A).
- A_i is an isolating cut for s_i , but C_i is the minimum, so $w(C_i) \le w(A_i)$
- We discard the heaviest of the cuts C_i, therefore w(C) ≤(1-1/k)Σ_{i=1}^kw(C_i). Hence:

 $w(C) \le (1-1/k) \sum_{i=1}^{k} w(C_i) \le (1-1/k) \sum_{i=1}^{k} w(A_i) = 2(1-1/k) w(A)$

- Consider a graph with 2k vertices, k of which form a k-cycle with edge weight equal to 1 and k terminals, each one connected to one of the vertices of the cycle with edges of weight 2-ε for a small ε>0.
- The algorithm computes a solution of weight (k-1)(2-ε), while the optimal multiway cut has weight k.

Construction of a Gomory-Hu tree

- Consider a tree T with one node, the set $S_0 = V$
- Select a set S_i , $|S_i| \ge 2$ and select 2 vertices u, v of S_i .
- Compute a minimum u-v cut in G', where G' is the graph obtained by G and collapsing each subtree of S_i into a single supernode. We compute the minimum cut between u and v in the new graph and obtain a partition Vn containing u and V₂ containing v.
- Graph T is modified by breaking S_i into two sets S_{i1}=S_i∩V₁ and S_{i2}=S_i∩V₂. We add an edge between them with cost the cost just calculated.
- We connect a subtree of T to S_{i1} if its supernode was in the same partition as u in the minimum cut, otherwise we connect it to S_{i2}.

Properties of a Gomory-Hu tree

- For each pair of vertices u,v in V, the weight of a minimum u-v cut in G is the same as that in T
- For each edge e in T, w'(e) is the weight of the cut associated with e in G.
- Lemma: Let S be the union of cuts in G associated with I edges of T. Then, the removal of S from G leaves the graph with at least I+1 components.
- Let V₁, V₂,..., V_{I+1} be the connected components which are left in T after removing I edges. For any u in V_i and v in V_j, we must have removed some edge in T that disconnects u and v. A cut is associated with this edge in G, which must disconnect u and v in G as well. Thus removing I edges in T, results in at least I+1 connected components in G.

(2-2/k) approximation algorithm

- Compute a Gomory-Hu tree T in G
- Output the union C of the k-1 lightest cuts of the n-1 cuts associated with edges of T in G
 - If more than k components are created, throw back some edges until there are k components.
- Let A be an optimal k-cut in G. As before, let the cuts V₁, V₂,...,V_{k+1} be the k components formed by removing A from G and A_i the cut separating V_i from the rest of the graph and Σ_{i=1}^kw(A_i)=2w(A).
- Assume A_k is the heaviest cut.
- Modify T by shrinking vertices corresponding to each V_i into a supernode and remove edges until the graph becomes a tree T'.
- Root T' at the supernode of V_k. Consider the edge (u_i,v_i) connecting a supernode V_i with its parent. These edges belonged in T, therefore w'(u_i,v_i)≤w(A_i). Thus

 $\sum_{i=1}^{k-1} W'(u_i, v_i) \le \sum_{i=1}^{k-1} W(A_i) \le 2(1-1/k) W(A)$

- Similar as in multiway cut.
- 2k vertices k of which form a cycle with edge costs equal to 1 and k distant nodes (they are no longer called terminals) connected with one node of the cycle with an edge with cost 2-ε.
- Using the Gomory-Hu algorithm a solution with cost (k-1)(2-ε), whereas the optimal algorithm picks all edges with cost 1, i.e. te cost is k.

Thank you!

NTUA, Spring Semester 2009