Why is modal logic decidable

Petros Potikas

NTUA

9/5/2017

What is modal logic?

What is modal logic? A *modal* is anything that qualifies the truth of a sentence.

What is modal logic? A *modal* is anything that qualifies the truth of a sentence.

 $\Box p, \Diamond p$

What is modal logic? A *modal* is anything that qualifies the truth of a sentence.

 $\Box p, \Diamond p$

Historically it begins from Aristotle goes to Leibniz.

What is modal logic? A *modal* is anything that qualifies the truth of a sentence.

 $\Box p, \Diamond p$

Historically it begins from Aristotle goes to Leibniz. Continues in 1912 with C.I. Lewis and Kripke in the 60's.

What is modal logic? A *modal* is anything that qualifies the truth of a sentence.

 $\Box p, \Diamond p$

Historically it begins from Aristotle goes to Leibniz. Continues in 1912 with C.I. Lewis and Kripke in the 60's.

Applications of ML: artificial intelligence (knowledge representation), program verification, hardware verification, and distributed computing

What is modal logic? A *modal* is anything that qualifies the truth of a sentence.

 $\Box p, \Diamond p$

Historically it begins from Aristotle goes to Leibniz. Continues in 1912 with C.I. Lewis and Kripke in the 60's.

Applications of ML: artificial intelligence (knowledge representation), program verification, hardware verification, and distributed computing

Reason: good balance between expressive power and computational complexity

Two computational problems:

- Model-checking problem: is a given formula true at a given state at a given Kripke structure
- Validity problem: is a given formula true in all states of all Kripke structures

• Both problems are decidable.

- Both problems are decidable.
- Model-checking can be solved in linear time, while validity is PSPACE-complete.

- Both problems are decidable.
- Model-checking can be solved in linear time, while validity is PSPACE-complete.
- However, ML is a fragment of first order logic (FO).

- Both problems are decidable.
- Model-checking can be solved in linear time, while validity is PSPACE-complete.
- However, ML is a fragment of first order logic (FO).
- In first order logic, the above problems are computationally hard.

- Both problems are decidable.
- Model-checking can be solved in linear time, while validity is PSPACE-complete.
- However, ML is a fragment of first order logic (FO).
- In first order logic, the above problems are computationally hard.
- Only very restricted fragments of FO are decidable, typically defined in terms of bounded quantifier alternation.

- Both problems are decidable.
- Model-checking can be solved in linear time, while validity is PSPACE-complete.
- However, ML is a fragment of first order logic (FO).
- In first order logic, the above problems are computationally hard.
- Only very restricted fragments of FO are decidable, typically defined in terms of bounded quantifier alternation.
- But in ML we have arbitrary nesting of modalities.

- Both problems are decidable.
- Model-checking can be solved in linear time, while validity is PSPACE-complete.
- However, ML is a fragment of first order logic (FO).
- In first order logic, the above problems are computationally hard.
- Only very restricted fragments of FO are decidable, typically defined in terms of bounded quantifier alternation.
- But in ML we have arbitrary nesting of modalities.
- So, this cannot be captured by bounded quantifier alternation.

• Taking a closer look at ML, we see that it is a fragments of 2-variable first-order logic FO².

- Taking a closer look at ML, we see that it is a fragments of 2-variable first-order logic FO².
- FO² is more tractable than full first-order logic.

- Taking a closer look at ML, we see that it is a fragments of 2-variable first-order logic FO².
- FO² is more tractable than full first-order logic.
- However, this is not enough, as extensions of ML, as *computation-tree logic* (CTL) while not captured by FO²

- Taking a closer look at ML, we see that it is a fragments of 2-variable first-order logic FO².
- FO² is more tractable than full first-order logic.
- However, this is not enough, as extensions of ML, as *computation-tree logic* (CTL) while not captured by FO²
- CTL can be viewed as a fragment of 2-variable fixpoint logic (FP²)

- Taking a closer look at ML, we see that it is a fragments of 2-variable first-order logic FO².
- FO² is more tractable than full first-order logic.
- However, this is not enough, as extensions of ML, as *computation-tree logic* (CTL) while not captured by FO²
- CTL can be viewed as a fragment of 2-variable fixpoint logic (FP²)
- FP^2 does not enjoy the nice computational properties of FO^2 .

- Taking a closer look at ML, we see that it is a fragments of 2-variable first-order logic FO².
- FO² is more tractable than full first-order logic.
- However, this is not enough, as extensions of ML, as *computation-tree logic* (CTL) while not captured by FO²
- CTL can be viewed as a fragment of 2-variable fixpoint logic (FP²)
- FP^2 does not enjoy the nice computational properties of FO^2 .
- Decidability of CTL can be explained by *tree-model property*, which is enjoyed by CTL, but not by FP².

- Taking a closer look at ML, we see that it is a fragments of 2-variable first-order logic FO².
- FO² is more tractable than full first-order logic.
- However, this is not enough, as extensions of ML, as *computation-tree logic* (CTL) while not captured by FO²
- CTL can be viewed as a fragment of 2-variable fixpoint logic (FP²)
- FP^2 does not enjoy the nice computational properties of FO^2 .
- Decidability of CTL can be explained by *tree-model property*, which is enjoyed by CTL, but not by FP².
- Finally, the tree model property leads to automata-based decision procedures.

Syntax

Definition

(The Basic Modal Language) Let $\mathbb{P} = \{\mathbb{P}_0, \mathbb{P}_1, \mathbb{P}_2, ...\}$ be a set of sentence letters, or atomic propositions. We also include two special propositions \top and \bot meaning 'true' and 'false' respectively. The set of well-formed formulas of modal logic is the smallest set generated by the following grammar: $\mathbb{P}_0, \mathbb{P}_1, \mathbb{P}_2, ... \mid \top \mid \bot \mid \neg A \mid A \lor B \mid A \land B \mid A \to B \mid \Box A \mid \Diamond A$

Examples

Modal formulas include: $\Box \bot$, $\mathbb{P}_0 \to \Diamond(\mathbb{P}_1 \land \mathbb{P}_2)$.

• A Kripke structure M is a tuple (S, π, R) , where S is set of states (or possible worlds), $\pi : \mathbb{P} \to 2^S$, and R a binary relation on S.

- A Kripke structure M is a tuple (S, π, R), where S is set of states (or possible worlds), π : P → 2^S, and R a binary relation on S.
- $(M, s) \models A$, sentence A is true at s in M

- A Kripke structure M is a tuple (S, π, R), where S is set of states (or possible worlds), π : P → 2^S, and R a binary relation on S.
- $(M, s) \models A$, sentence A is true at s in M

Truth conditions:

- $(M,s) \models \mathbb{P}_i \text{ iff } s \in \pi(\mathbb{P}_i)$
- 2 $(M,s) \models \top$
- (*M*, *s*) ⊭ ⊥
- $(M,s) \models \neg A$ iff not $(M,s) \models A$
- **(**M, s) $\models A \lor B$ iff either $(M, s) \models A$ or, $(M, s) \models B$,or both
- **(**M, s**)** $\models \Box A$ iff for every t, s.t. $R(s, t), (M, t) \models A$

- A Kripke structure M is a tuple (S, π, R) , where S is set of states (or possible worlds), $\pi : \mathbb{P} \to 2^S$, and R a binary relation on S.
- $(M, s) \models A$, sentence A is true at s in M

Truth conditions:

- $(M,s) \models \mathbb{P}_i \text{ iff } s \in \pi(\mathbb{P}_i)$
- ② (M, s) ⊨ ⊤
- (*M*, s) ⊭ ⊥
- $(M,s) \models \neg A$ iff not $(M,s) \models A$
- 𝔅 $(M,s) \models A ∨ B$ iff either $(M,s) \models A$ or, $(M,s) \models B$,or both
- $(M,s) \models \Box A$ iff for every t, s.t. $R(s,t), (M,t) \models A$
 - A sentence true at every possible world in every model is said to be *valid*, written $\models A$

Theorem

There is an algorithm that, given a finite Kripke structure M, a state s of M and a modal formula ϕ , determines whether $(M, s) \models \phi$ in time $O(||M|| \times |\phi|)$.

Theorem

There is an algorithm that, given a finite Kripke structure M, a state s of M and a modal formula ϕ , determines whether $(M, s) \models \phi$ in time $O(||M|| \times |\phi|)$.

||M||: number of states in S, and number of pairs in R

Theorem

There is an algorithm that, given a finite Kripke structure M, a state s of M and a modal formula ϕ , determines whether $(M, s) \models \phi$ in time $O(||M|| \times |\phi|)$.

||M||: number of states in S, and number of pairs in R

 $|\phi|$: length of ϕ , number of symbols is ϕ

Theorem

There is an algorithm that, given a finite Kripke structure M, a state s of M and a modal formula ϕ , determines whether $(M, s) \models \phi$ in time $O(||M|| \times |\phi|)$.

||M||: number of states in S, and number of pairs in R

 $|\phi|$: length of ϕ , number of symbols is ϕ

Proof.

Let $\phi_1, ..., \phi_m$ be the subformulas of ϕ listed in order of length. Thus $\phi_m = \phi$, and if ϕ_i is a subformulas of ϕ_j , then i < j. There are at most $|\phi|$ subformulas, so $m \le |\phi|$. By induction on k, we can show that we can label each state s with ϕ_j or $\neg \phi_j$, for j = 1, ..., k, depending on whether or not ϕ_j is true in s in time O(k||M||). Only interesting case is $\phi_{k+1} = \Box \phi_j$, j < k + 1. By induction hypothesis, we have that each state has already been labeled with ϕ_j or $\neg \phi_j$, so we know if node s can be labeled with ϕ_{k+1} or not in time O(||M|||).

Petros Potikas (NTUA)

Modal logic decidability

Characterizing the properties of necessity

Set of valid formulas can be viewed as a characterization of the properties of necessity

Characterizing the properties of necessity

Set of valid formulas can be viewed as a characterization of the properties of necessity

Two approaches:

- Proof-theoretic: all properties of necessity can be formally derived from a short list of basic properties
- Algorithmic: we study algorithms that recognize properties of necessity and consider their computational complexity.

Properties of necessity

Some basic properties of necessity:

Theorem

For all formulas ϕ, ψ , and Kripke structures M:

() if ϕ is an instance of a propositional tautology, then $M \models \phi$

2 if
$$M \models \phi$$
 and $M \models \phi \rightarrow \psi$, then $M \models \psi$

• if
$$M \models \phi$$
, then $M \models \Box \phi$

Characterizing the properties of necessity: Proof-theoretic

Consider the following axiom system $\mathcal{K}:$

- (A1) All tautologies of propositional calculus
- (A2) $(\Box \phi \land \Box (\phi \rightarrow \psi)) \rightarrow \Box \psi$ (Distribution axiom)
- (R1) From ϕ and $\phi \rightarrow \psi$ infer ψ (Modus ponens)
- (R2) From ϕ infer $\Box \phi$ (Generalization)

Characterizing the properties of necessity: Proof-theoretic

Consider the following axiom system $\mathcal{K}:$

- (A1) All tautologies of propositional calculus
- (A2) $(\Box \phi \land \Box (\phi \rightarrow \psi)) \rightarrow \Box \psi$ (Distribution axiom)
- (R1) From ϕ and $\phi \rightarrow \psi$ infer ψ (Modus ponens)
- (R2) From ϕ infer $\Box \phi$ (Generalization)

Theorem (Kripke '63)

 ${\cal K}$ is a sound and complete axiom system.

• The above characterization of the properties of necessity is not constructive.

- The above characterization of the properties of necessity is not constructive.
- An algorithm that recongizes valid formulas is another characterization.

- The above characterization of the properties of necessity is not constructive.
- An algorithm that recongizes valid formulas is another characterization.
- First step, if a formula is satisfiable, it is also satisfiable is a finite structure of bounded size (*bounded-model property*).

- The above characterization of the properties of necessity is not constructive.
- An algorithm that recongizes valid formulas is another characterization.
- First step, if a formula is satisfiable, it is also satisfiable is a finite structure of bounded size (*bounded-model property*).
- Stronger than the *finite-model property*, which asserts that if a formula is satisfiable, then it is satisfiable in a finite structure.

- The above characterization of the properties of necessity is not constructive.
- An algorithm that recongizes valid formulas is another characterization.
- First step, if a formula is satisfiable, it is also satisfiable is a finite structure of bounded size (*bounded-model property*).
- Stronger than the *finite-model property*, which asserts that if a formula is satisfiable, then it is satisfiable in a finite structure.
- This implies that formula ϕ is valid in *all* Kripke structures iff ϕ is valid in all *finite* Kripke structures.

- The above characterization of the properties of necessity is not constructive.
- An algorithm that recongizes valid formulas is another characterization.
- First step, if a formula is satisfiable, it is also satisfiable is a finite structure of bounded size (*bounded-model property*).
- Stronger than the *finite-model property*, which asserts that if a formula is satisfiable, then it is satisfiable in a finite structure.
- This implies that formula ϕ is valid in *all* Kripke structures iff ϕ is valid in all *finite* Kripke structures.

Theorem (Fischer, Ladner '79)

If a modal formula ϕ is satisfiable, then ϕ is satisfiable in a Kripke structure with at most $2^{|\phi|}$ states.

 From the above Theorem we can get an algorithm (not efficient) for testing validity of a formula φ: construct all Kripke structures with at most 2^{|φ|} states and check if the formula is true in every state of each of these structures.

- From the above Theorem we can get an algorithm (not efficient) for testing validity of a formula φ: construct all Kripke structures with at most 2^{|φ|} states and check if the formula is true in every state of each of these structures.
- The "inherent difficulty" of the problem is given by the next theorem:

Theorem (Ladner '77)

The validity problem for modal logic is PSPACE-complete.

• Modal logic can be viewed as a fragment of first-order logic.

- Modal logic can be viewed as a fragment of first-order logic.
- The states in a Kripke structure correspond to domain elements in a relational structure and modalities correspond to quantifiers.

- Modal logic can be viewed as a fragment of first-order logic.
- The states in a Kripke structure correspond to domain elements in a relational structure and modalities correspond to quantifiers.
- Given a set ℙ of propositional constants, let the vocabulary ℙ* constist of unary predicate q corresponding to each propositional constant q in ℙ, as well as binary predicate R.

- Modal logic can be viewed as a fragment of first-order logic.
- The states in a Kripke structure correspond to domain elements in a relational structure and modalities correspond to quantifiers.
- Given a set ℙ of propositional constants, let the vocabulary ℙ* constist of unary predicate q corresponding to each propositional constant q in ℙ, as well as binary predicate R.
- Every Kripke structure M can be viewed as a relational structure M^{*} over the vocabulary ℙ^{*}.

- Modal logic can be viewed as a fragment of first-order logic.
- The states in a Kripke structure correspond to domain elements in a relational structure and modalities correspond to quantifiers.
- Given a set ℙ of propositional constants, let the vocabulary ℙ* constist of unary predicate q corresponding to each propositional constant q in ℙ, as well as binary predicate R.
- Every Kripke structure M can be viewed as a relational structure M^{*} over the vocabulary P^{*}.
- Formally, a mapping from a Kriple structure $M = (S, \pi, R)$ to a relational structure M^* over the vocabulary \mathbb{P}^* has:
 - domain of M^* is S.
 - ② for each propositional constant q ∈ P, the interpretation of q in M* is the set π(q).
 - **(3)** the interpretation of the binary predicate \mathcal{R} , is the binary relation R.

A translation from modal formulas into first-order formulas over the vocabulary \mathbb{P}^* , so that for every modal formula ϕ there is corresponding first-order formula ϕ^* with one free variable (ranging over *S*):

• $q^* = q(x)$ for a propositional constant q

2
$$(\neg \phi)^* = \neg(\phi^*)$$

$$(\phi \wedge \psi)^* = (\phi^* \wedge \psi^*)$$

(□φ)* = (∀y(R(x, y) → φ*(x/y))), where y is a new variable not appearing in φ* and φ*(x/y) is the result of replacing all free occurrences of x in φ* by y

A translation from modal formulas into first-order formulas over the vocabulary \mathbb{P}^* , so that for every modal formula ϕ there is corresponding first-order formula ϕ^* with one free variable (ranging over *S*):

• $q^* = q(x)$ for a propositional constant q

2
$$(\neg \phi)^* = \neg(\phi^*)$$

$$(\phi \wedge \psi)^* = (\phi^* \wedge \psi^*)$$

(□φ)* = (∀y(R(x,y) → φ*(x/y))), where y is a new variable not appearing in φ* and φ*(x/y) is the result of replacing all free occurrences of x in φ* by y

Example

$$(\Box \Diamond q)^* = \forall y (R(x, y) \rightarrow \exists z (R(y, z) \land q(z)))$$

Theorem (vBenthem '74,'85)

•
$$(M, s) \models \phi$$
 iff $(M^*, V) \models \phi^*(x)$, for each assignment V s.t.
 $V(x) = s$.

2 ϕ is a valid modal formula iff ϕ^* is a valid first-order formula.

 ϕ^* is true of exactly the domain elements corresponding to states s for which $(\textit{M},\textit{s}) \models \phi$

Translation of Modal logic to First-Order Logic Is there a paradox?

Is there a paradox?

• Modal logic is essentially a first-order logic.

- Modal logic is essentially a first-order logic.
- Model-checking in first-order logic is PSPACE-complete while in modal logic in linear time.

- Modal logic is essentially a first-order logic.
- Model-checking in first-order logic is PSPACE-complete while in modal logic in linear time.
- Validity is robustly undecidable in first-order logic (decidable only by bounding the alternation of quantifiers), while in modal logic is PSPACE-complete.

- Modal logic is essentially a first-order logic.
- Model-checking in first-order logic is PSPACE-complete while in modal logic in linear time.
- Validity is robustly undecidable in first-order logic (decidable only by bounding the alternation of quantifiers), while in modal logic is PSPACE-complete.
- Carefully examining propositional modal logic, reveals that it is a fragment of 2-variable first-order logic (FO²), e.g. $\forall x \forall y (R(x, y) \rightarrow R(y, x))$ is in FO², while $\forall x \forall y \forall z (R(x, y) \land R(y, z) \rightarrow R(x, z))$ is not in FO².

- Modal logic is essentially a first-order logic.
- Model-checking in first-order logic is PSPACE-complete while in modal logic in linear time.
- Validity is robustly undecidable in first-order logic (decidable only by bounding the alternation of quantifiers), while in modal logic is PSPACE-complete.
- Carefully examining propositional modal logic, reveals that it is a fragment of 2-variable first-order logic (FO²), e.g. $\forall x \forall y (R(x, y) \rightarrow R(y, x))$ is in FO², while $\forall x \forall y \forall z (R(x, y) \land R(y, z) \rightarrow R(x, z))$ is not in FO².
- Two variables suffice to express modal logic formulas, see the above definition, where new variables are introduced only in the last clause:

Is there a paradox?

- Modal logic is essentially a first-order logic.
- Model-checking in first-order logic is PSPACE-complete while in modal logic in linear time.
- Validity is robustly undecidable in first-order logic (decidable only by bounding the alternation of quantifiers), while in modal logic is PSPACE-complete.
- Carefully examining propositional modal logic, reveals that it is a fragment of 2-variable first-order logic (FO²), e.g. $\forall x \forall y (R(x, y) \rightarrow R(y, x))$ is in FO², while $\forall x \forall y \forall z (R(x, y) \land R(y, z) \rightarrow R(x, z))$ is not in FO².
- Two variables suffice to express modal logic formulas, see the above definition, where new variables are introduced only in the last clause:

Example

$$(\Box\Box q)^* = \forall y(R(x,y) \rightarrow \forall z(R(y,z) \rightarrow q(z))).$$

But re-using variables we can avoid introducing new variables. Replace the definition of ϕ^* by definition ϕ^+ :

But re-using variables we can avoid introducing new variables. Replace the definition of ϕ^* by definition ϕ^+ :

q⁺ = q(x) for a propositional constant q
 (¬φ)⁺ = ¬(φ⁺)
 (φ ∧ ψ)⁺ = (φ^{*} ∧ ψ⁺)
 (□φ)⁺ = (∀y(R(x, y) → ∀x(x = y → φ⁺)))

But re-using variables we can avoid introducing new variables. Replace the definition of ϕ^* by definition ϕ^+ :

Example

$$(\Box\Box q)^+ = orall y(R(x,y)
ightarrow orall x(x=y
ightarrow orall y(R(x,y)
ightarrow orall x(x=y
ightarrow q(x))).$$

Theorem

- $(M, s) \models \phi$ iff $(M^*, V) \models \phi^+(x)$, for each assignment V s.t. V(x) = s.
- **2** ϕ is a valid modal formula iff ϕ^+ is a valid FO² formula.

How hard is to evaluate truth of FO² formulas?

How hard is to evaluate truth of FO² formulas?

Theorem (Immerman '82, Vardi '95)

There is an algorithm that, given a relational structure M over a domain D, an FO^2 -formula $\phi(x, y)$ and an assignment $V : \{x, y\} \to D$, determines whether $(M, V) \models \phi$ in time $O(||M||^2 \times |\phi|)$.

• Historically, Scott in 1962 showed the first decidability result for FO², without equality. The full class FO² was considered by Mortimer in 1975, who proved decidability by showing that it has the finite model proporty.

- Historically, Scott in 1962 showed the first decidability result for FO², without equality. The full class FO² was considered by Mortimer in 1975, who proved decidability by showing that it has the finite model proporty.
- But Mortimer's proof shows bounded-model property.

Theorem

If an FO²-formula ϕ is satisfiable, then ϕ is satisfiable in a relational structure with at most $2^{|\phi|}$ elements.

• To check the validity of a FO² formula ϕ , one has to consider only all structures of exponential size.

- To check the validity of a FO² formula φ, one has to consider only all structures of exponential size.
- Further, the translation of modal logic to FO² is linear, so we have Theorem 5.

- To check the validity of a FO² formula φ, one has to consider only all structures of exponential size.
- Further, the translation of modal logic to FO² is linear, so we have Theorem 5.
- Note, however, that the validity problem for FO² is hard for co-NEXPTIME (Fürer81) and also complete, while from Theorem 6 modal logic is PSPACE-complete.

Complexity of FO²

- To check the validity of a FO² formula φ, one has to consider only all structures of exponential size.
- Further, the translation of modal logic to FO² is linear, so we have Theorem 5.
- Note, however, that the validity problem for FO² is hard for co-NEXPTIME (Fürer81) and also complete, while from Theorem 6 modal logic is PSPACE-complete.
- The embedding to FO² does not give a satisfactory explananation of the tractability of modal logic.

• In epistemic logic veracity is needed, what is known is true,

• In epistemic logic veracity is needed, what is known is true, i.e. $\Box \phi \to \phi$

- In epistemic logic veracity is needed, what is known is true, i.e. $\Box \phi \rightarrow \phi$
- Logical properties of necessity are related with the properties of the graph, e.g. veracity is reflexivity

- In epistemic logic veracity is needed, what is known is true, i.e. $\Box \phi \to \phi$
- Logical properties of necessity are related with the properties of the graph, e.g. veracity is reflexivity
- A Kripke structure $M = (S, \pi, R)$ is said to be reflexive if the relation R is reflexive. Let M_r be the class of all reflexive Kripke structures.

- In epistemic logic veracity is needed, what is known is true, i.e. $\Box \phi \to \phi$
- Logical properties of necessity are related with the properties of the graph, e.g. veracity is reflexivity
- A Kripke structure $M = (S, \pi, R)$ is said to be reflexive if the relation R is reflexive. Let M_r be the class of all reflexive Kripke structures.
- Axiom $\mathcal{T}: \Box p \to p$

- In epistemic logic veracity is needed, what is known is true, i.e. $\Box \phi \to \phi$
- Logical properties of necessity are related with the properties of the graph, e.g. veracity is reflexivity
- A Kripke structure $M = (S, \pi, R)$ is said to be reflexive if the relation R is reflexive. Let M_r be the class of all reflexive Kripke structures.
- Axiom $\mathcal{T}: \Box p \to p$

Theorem

 \mathcal{T} is sound and complete for M_r .

- In epistemic logic veracity is needed, what is known is true, i.e. $\Box \phi \to \phi$
- Logical properties of necessity are related with the properties of the graph, e.g. veracity is reflexivity
- A Kripke structure $M = (S, \pi, R)$ is said to be reflexive if the relation R is reflexive. Let M_r be the class of all reflexive Kripke structures.
- Axiom $\mathcal{T}: \Box p \rightarrow p$

Theorem

 \mathcal{T} is sound and complete for M_r .

How hard is validity under the assumption of veracity?

- In epistemic logic veracity is needed, what is known is true, i.e. $\Box \phi \to \phi$
- Logical properties of necessity are related with the properties of the graph, e.g. veracity is reflexivity
- A Kripke structure $M = (S, \pi, R)$ is said to be reflexive if the relation R is reflexive. Let M_r be the class of all reflexive Kripke structures.
- Axiom $\mathcal{T}: \Box p \rightarrow p$

Theorem

 \mathcal{T} is sound and complete for M_r .

How hard is validity under the assumption of veracity?

Theorem

The validity problem for modal logic in M_r is PSPACE-complete.

- In epistemic logic veracity is needed, what is known is true, i.e. $\Box \phi \to \phi$
- Logical properties of necessity are related with the properties of the graph, e.g. veracity is reflexivity
- A Kripke structure $M = (S, \pi, R)$ is said to be reflexive if the relation R is reflexive. Let M_r be the class of all reflexive Kripke structures.
- Axiom $\mathcal{T}: \Box p \rightarrow p$

Theorem

 \mathcal{T} is sound and complete for M_r .

How hard is validity under the assumption of veracity?

Theorem

The validity problem for modal logic in M_r is PSPACE-complete.

Theorem

A modal formula ϕ is valid in M_r iff the FO² $\forall x(R(x,x) \rightarrow \phi^+)$ is valid.

Petros Potikas (NTUA)

What about other properties of necessity?

What about other properties of necessity? Consider introspection:

Positive introspection - "I know what I know":

What about other properties of necessity? Consider introspection:

9 Positive introspection - "I know what I know": $\Box p \rightarrow \Box \Box p$.

- **9** Positive introspection "I know what I know": $\Box p \rightarrow \Box \Box p$.
- Ø Negative introspection "I know what I don't know":

- **9** Positive introspection "I know what I know": $\Box p \rightarrow \Box \Box p$.
- **2** Negative introspection "I know what I don't know": $\neg \Box p \rightarrow \Box \neg \Box p$.

- **9** Positive introspection "I know what I know": $\Box p \rightarrow \Box \Box p$.
- **2** Negative introspection "I know what I don't know": $\neg \Box p \rightarrow \Box \neg \Box p$.
- A Kripke structure $M = (S, \pi, R)$ is said to be reflexive, symmetric, transitive if the relation R is reflexive, symmetric, transitive.

- **9** Positive introspection "I know what I know": $\Box p \rightarrow \Box \Box p$.
- **2** Negative introspection "I know what I don't know": $\neg \Box p \rightarrow \Box \neg \Box p$.
- A Kripke structure $M = (S, \pi, R)$ is said to be reflexive, symmetric, transitive if the relation R is reflexive, symmetric, transitive.
- Let *M_{rst}* be the class of all reflexive, symmetric and transitive Kripke structures.

- **9** Positive introspection "I know what I know": $\Box p \rightarrow \Box \Box p$.
- **2** Negative introspection "I know what I don't know": $\neg \Box p \rightarrow \Box \neg \Box p$.
- A Kripke structure $M = (S, \pi, R)$ is said to be reflexive, symmetric, transitive if the relation R is reflexive, symmetric, transitive.
- Let *M_{rst}* be the class of all reflexive, symmetric and transitive Kripke structures.
- Let S5 be the axiom system obtained from T by adding the two rules of introspection.

What about other properties of necessity? Consider introspection:

- **9** Positive introspection "I know what I know": $\Box p \rightarrow \Box \Box p$.
- **2** Negative introspection "I know what I don't know": $\neg \Box p \rightarrow \Box \neg \Box p$.
- A Kripke structure $M = (S, \pi, R)$ is said to be reflexive, symmetric, transitive if the relation R is reflexive, symmetric, transitive.
- Let *M_{rst}* be the class of all reflexive, symmetric and transitive Kripke structures.
- Let S5 be the axiom system obtained from T by adding the two rules of introspection.

Theorem

- **1** S5 is sound and complete for M_{rst} .
- **2** The validity problem for S5 is NP-complete.

What about other properties of necessity? Consider introspection:

- **9** Positive introspection "I know what I know": $\Box p \rightarrow \Box \Box p$.
- **2** Negative introspection "I know what I don't know": $\neg \Box p \rightarrow \Box \neg \Box p$.
- A Kripke structure $M = (S, \pi, R)$ is said to be reflexive, symmetric, transitive if the relation R is reflexive, symmetric, transitive.
- Let *M_{rst}* be the class of all reflexive, symmetric and transitive Kripke structures.
- Let S5 be the axiom system obtained from T by adding the two rules of introspection.

Theorem

- **1** S5 is sound and complete for M_{rst} .
- **2** The validity problem for S5 is NP-complete.

Symmetry can be expressed by FO², $\forall x, y(R(x, y) \rightarrow R(y, x))$, while transitivity cannot $\forall x, y, z(R(x, y) \land R(y, z) \rightarrow R(x, z))$.

Petros Potikas (NTUA)

Modal logic decidability

About decidability of modal logic

- The validity in a modal logic is typically decidable. It is very hard to find a modal logic, where validity is undecidable.
- The translation to FO² provides a partial explanation why modal logic is decidable.