Θεωρητική Πληροφορική ΙΙ:
Ειδικά Θέματα Λογικής (ΜΠΛΑ, ΑΛΜΑ)
Λογική, Αυτόματα και Παίγνια (ΣΗΜΜΥ)
εαρινό εξάμηνο 2017-2018
Γενικά
Διδάσκων
- Στάθης Ζάχος, Καθηγητής ()
Βοηθός διδασκαλίας
- Αγγελική Χαλκή, Υ.Δ. ()
Έναρξη μαθήματος
Τρίτη, 20 Φεβρουαρίου 2018
Διαλέξεις
Τρίτη 11:30-14:30, αίθουσα 1.1.31 (παλαιό) Κτίριο Ηλεκτρολόγων, Ε.Μ.Π.
Ώρες Γραφείου
- Τρίτη, 14:30-15:30, Εργαστήριο Λογικής και Επιστήμης Υπολογισμών (CoReLab), Αίθουσα 1.1.3, Παλαιά Κτίρια Ηλεκτρολόγων
Προαπαιτούμενα
Μαθήματα σε Θεωρία Υπολογισιμότητας και Μαθηματικής Λογικής.
Ανακοινώσεις
Διαλέξεις - Παρουσιάσεις
Η/Μ | Ομιλητής | Θέμα - Περιεχόμενο |
---|---|---|
20/2/2018 | Διαδικαστικά - Εισαγωγή | |
27/2/2018 | Π. Ποτίκας | Intro to Finite Model Theory, Ehrenfeucht-Fraisse Games |
6/3/2018 | Α. Χαλκή | Finite Model Theory: Locality |
13/3/2018 | Ε. Αναστασιάδη | Finite Model Theory: Complexity |
20/3/2018 | Ε. Αναστασιάδη | Finite Model Theory: Complexity (cont'd) |
27/3/2018 | A. Κάββος | Finite Model Theory: Second Order Logic |
3/4/2018 | A. Κάββος | Finite Model Theory: Second Order Logic, Strings, Tree Automata (cont'd) |
17/4/2018 | A. Σινγκ | Λογικές με μέτρηση |
24/4/2018 | A. Σινγκ | Λογικές με μέτρηση |
15/5/2018 | Θ. Παπαμακάριος | Μηχανές Turing και πεπερασμένα μοντέλα |
29/5/2018 | Α. Χαλκή | Fixed point logics (I) |
5/6/2018 | Α. Χαλκή | Fixed point logics (II) |
12/6/2018 | Α. Χαλκή | Fixed point logics (III) |
Υλικό - Βιβλιογραφία
Modal Logic
- P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge University Press, 2001.
- R. Goldblatt, Logics of Time and Computation, CSLI Publications, 1992.
- B. F. Chellas, Modal Logic - an introduction, Cambridge University Press, 1980.
- M. Fitting, R. L. Mendelsohn, First Order Modal Logic, Kluwer Academic Publishers, 1998
- M. Vardi. Why is modal logic so robustly decidable? In DIMACS Series in Discrete Mathematics and Theoretical Computer Science 31, pages 149-184. American Math. Society, 1997.
- E. Grädel. Why are modal logics so robustly decidable? Bulletin of the EATCS, vol 68, 90-103, 1999.
Automata, Logics and Infinite Games
- Σ. Ζάχος, Α. Παγουρτζής, Τα Θεμέλια της Πληροφορικής, εκδόσεις Τσότρας, 2014
- Μ. Sipser. Introduction to the Theory of Computation.
- J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Computation.
- H. R. Lewis and C. Papadimitriou. Elements of the Theory of Computation, 2nd edition.
- D. C. Kozen. Automata and Computability (Undergraduate Texts in Computer Science).
- M. Harrison. Introduction to Switching and Automata Theory. McGraw-Hill Book Company, New York (1965).
- L. Libkin. Elements of Finite Model Theory. Springer (2012).
- Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard, Denis Lugiez, Christof Löding, Sophie Tison, Marc Tommasi. Tree Automata Techniques and Applications.
- Editors: Erich Grädel, Wolfgang Thomas, Thomas Wilke. Automata Logics, and Infinite Games. A Guide to Current Research. Springer, Lecture Notes in Computer Science.
Proof Complexity
- Grigori Tseitin. On the complexity of derivation in propositional calculus. Studies in constructive mathematics and mathematical logic, part 2, pages 115–125, 1968.
- Stephen Cook and Robert Reckhow. The relative efficiency of propositional proof systems. Journal of Symbolic Logic, 44(1):36–50, 1979.
- Robert Reckhow. On the lengths of proofs in the propositional calculus. PhD thesis, Department of Computer Science, University of Toronto, 1975.
- Armin Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308, 1985.
- Vaŝek Chvátal and Endre Szemerédi. Many hard examples for resolution. J. ACM,35(4):759–768, 1988.
- Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987.
- Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow — resolution made simple. J. ACM, 48(2):149–169, 2001.
Finite Model Theory
- Ebbinghaus, Heinz-Dieter, Flum, Jörg, Finite MOdel Theory, 1995.
- Leonid Libkin Elements of finite model theory, 2012.
Linear Temporal Logic
- Val Goranko Temporal Logics of Computations, 12th European Summer School in Logic, Language and Information, 2000.
μ-Calculus
- Val Goranko Temporal Logics of Computations, 12th European Summer School in Logic, Language and Information, 2000.
- Yde Venema Lectures on the modal μ-calculus, 2012.
- Editors: Erich Grädel, Wolfgang Thomas, Thomas Wilke. Automata Logics, and Infinite Games. A Guide to Current Research. Springer, Lecture Notes in Computer Science.